

UNIVERSITY OF MISKOLC

DEPARTMENT OF MECHANICAL ENGINEERING

Combined Use of Reinforcement
Learning and Simulated Annealing:

Algorithms and Applications

PÉTER STEFÁN

PH.D. THESIS

Supervisors:
LÁSZLÓ DUDÁS, PH.D.

LÁSZLÓ MONOSTORI, D.SC.

JÓZSEF HATVANY PH.D. PROGRAM IN INFORMATION SCIENCE

Program director:
TIBOR TÓTH, D.SC.

Miskolc-Budapest, 2003

 2

Table of contents

Table of contents ... 2
List of Acronyms .. 5
List of Symbols ... 7
Acknowledgements ... 10
Chapter 1 ... 11
The Scope of the Research.. 11
Chapter 2 ... 14
Fundamentals of Reinforcement Learning.. 14

2.1 Machine learning... 14
2.2 The reinforcement learning problem... 15
2.3 Time-horizon models, Markov property, Bellman optimality equation............... 17
2.4 Solutions to the RL problem... 20

2.4.1 Dynamic programming .. 20
2.4.2 Temporal-difference learning .. 23

2.5 Q-learning ... 27
2.6 Maintenance of state information ... 29
2.7 Policies, exploration vs. exploitation.. 30
2.8 Discussion... 31

Chapter 3 ... 33
Annealing Schedules Using the Boltzmann Distribution ... 33

3.1 Introduction... 33
3.2 The convergence property of the Boltzmann formula .. 35
3.3 The accuracy of the approach ... 35
3.4 The continuous case .. 37
3.5 Illustration of the temperature bounds theorem.. 38
3.6 Annealing schedules ... 38

3.6.1 General annealing method ... 39
3.6.2 Linear annealing... 40
3.6.3 Quadratic, inversely quadratic and exponential schedules 41

3.7 Variable preferences ... 41
3.8 Computational validation of the annealing model.. 43
3.9 The use of Boltzmann distribution in other fields .. 47
3.10 Discussion... 48

Chapter 4 ... 49
Internet Protocol Packet Routing Algorithms ... 49

 3

4.1 Introduction... 49
4.2 Principles of dynamic routing algorithms ... 51

4.2.1 Classification and metrics .. 51
4.2.2 Design goals ... 52
4.2.3 Distance-vector algorithms .. 53
4.2.4 Link-state algorithms ... 55

4.3 Dynamic routing protocols ... 56
4.3.1 Routing Information Protocol.. 56
4.3.2 Interior Gateway Routing Protocol.. 57
4.3.3 Open Shortest Path First .. 57
4.3.4 Border Gateway Protocol... 58

4.4 Shortest-path computation .. 58
4.4.1 Dijkstra’s algorithm ... 59
4.4.2 Floyd-Warshall algorithm.. 61

4.5 Reinforcement learning based routing .. 62
4.6 Proposed extensions .. 65
4.7 Implementation, experimental results... 67

4.7.1 General principles .. 67
4.7.2 Time to live fields .. 69
4.7.3 Loop detection.. 69
4.7.4 Experimental results... 70

4.8 Implementation proposal... 71
4.8.1 IP-layer implementation... 71
4.8.2 UDP implementation ... 75

4.9 Discussion... 76
Chapter 5 ... 77
Flow-shop Scheduling in Virtual Manufacturing Environment 77

5.1 Introduction... 77
5.2 The concept of virtual manufacturing, distributed models 78
5.3 Job scheduling... 79
5.4 Flow-shop scheduling ... 80

5.4.1 The definition of flow-shop scheduling ... 80
5.4.2 Johnson’s algorithm... 81
5.4.3 Palmer’s method .. 82
5.4.4 Dannenbring’s algorithm ... 83
5.4.5 The quality of the solution... 83

5.5 The structure of the proposed dynamic scheduler .. 83
5.5.1 General principles .. 84
5.5.2 Evaluation/reward function.. 85
5.5.3 Job sequence setup ... 87
5.5.4 Update rules ... 87
5.5.5 Dynamic scheduler... 88

 4

5.6 Validation of the model... 89
5.6.1 Static analysis on different models .. 90
5.6.2 Dynamic behavior.. 92

5.7 Implementation of precedence constrains... 93
5.8 Discussion... 94

Chapter 6 ... 95
Summary and Future Work... 95
References ... 97
List of Publications ... 101
Appendix A... 103
Proofs to Temperature Bounds Theorems .. 103
Appendix B... 109
Routing Table Example from a CISCO 12000 Router ... 109
Appendix C ... 110
IP Packet Format Extensions of the Boltzmann-exploration Q-routing Algorithm 110
Appendix D... 114
The Flow-shop Schedule-evaluation Function ... 114
Appendix E ... 119
Structure of the CD-ROM... 119

 5

List of Acronyms

ACS Ant Colony System
AI Artificial Intelligence
AS Autonomous System
BA Boltzmann Annealing
BGP Border Gateway Protocol
BOE Bellman Optimality Equations
CIM Computer Integrated Manufacturing
CPU Central Processing Unit
DM Distributed Manufacturing
DNC Distributed Numerical Control
DP Dynamic Programming
EGRP Exterior Gateway Routing Protocol
FMC Flexible Manufacturing Cell
FMS Flexible Manufacturing System
FWA Floyd-Warshall Algorithm
GA Genetic Algorithm
ICMP Internet Control Message Protocol
IGRP Interior Gateway Routing Protocol
IMS Intelligent Manufacturing System
IP Internet Protocol
IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
MDP Markov Decision Process
ML Machine Learning
MS Manufacturing System
NIC Network Interconnection Card
NP Non-Polynomial (time algorithm)
OS Operating System
OSPF Open Shortest-Path First
RIP Routing Information Protocol
RIS Real Information System
RL Reinforcement Learning
RP Routing Protocol
RPS Real Production System
RRR Restricted Rank-based Randomized (policy)
SA Simulated Annealing

 6

SMQ “Send me Q”
TCP Transmission Control Protocol
TD Temporal Difference (learning)
TH Time Horizon
TSP Traveling Salesman’s Problem
TTL Time to Live (field)
TU Time Units
UDP User Datagram Protocol
VE Virtual Enterprise
VIS Virtual Information System
VMS Virtual Manufacturing System
VPS Virtual Production System

 7

List of Symbols

],[ba ,],[dc real intervals

w∇ partial derivatives of a quantity according to the weight vector elements

iA , iB , iC machining times on machines A, B, and C respectively

jia jth action in the ith state of the agent

α learning rate for “mean value type” action-state values
b vector of boundary conditions in flow-shop scheduling
β learning rate for “standard deviation type” action-state values

β “inverse temperature” (Chapter 3)

C set of constraints (Chapter 5)
C number of precedence constraints
c , ic constant parameters (Chapter 3)

ic precedence constraints (Chapter 5)

c vector of parameters (Chapter 3)

ijc cost of delivery between nodes i and j (Chapter 4)

γ discount factor

D compound matrix

id distance label on node i

ijd distance label on node i (matrix representation)

)dim(a dimension of vector a

δ temporal difference factor
}{xEπ expected value of x following policy π

iE “potential energy”

)(set eligibility value of state s

e the natural number ...71.2≈

ie base vector in dimension i (Chapter 5)

ε small positive error
)(xf transfer function

)(' xf ,)(" xf reward function

)(xg reward function

g auxiliary machining-delay vector (Chapter 5)

)(' xh ,)(" xh reward function

 8

jI Palmer index for job j

ijη visibility of a trail from node i to node j

jj the jth job under processing

k the number of actions sharing the same, maximal action-state value
κ minimum of the difference between each action-state value pair

)(AL link state description of node A

λ decay rate for eligibility traces
M matrix of machining times

)(im number of actions in the ith state (Chapter 2)

n number of states
ν small positive redundancy variable

1o , 2o abstract machining times
a

ssP ' probability of getting into state 's from state s via action a

ip probability of selecting action ia

p̂ scaled probability value

)(xp continuous probability distribution function

p , r permutation vectors (Chapter 5)

ipred predecessor node

ijpred predecessor node (matrix representation)

),(
jii asπ policy of the agent

*π optimal policy
'π non-optimal policy

Q , iQ action-state values

Q matrix of action-state values
*Q optimal action-state value

Q̂ scaled action-state value

maxQ the largest action-state value

minQ the smallest action-state value

)(xQ continuous function of the action-state value

q vector of action-state values

TR total reinforcement on time horizon T
a
ssR ' reward of getting into state 's from state s via action a

tr reinforcement in time step t

is the ith state of an agent

ξ integration auxiliary variable

 9

σ standard deviation
T time horizon (Chapter 2)
T temperature (Chapter 3)
T total machining time (Chapter 5)

T̂ scaled temperature

maxT , max
iT the largest temperature

minT , min
iT the smallest temperature

)(tT time-temperature function (Chapter 3)

)(AT routing table of node A (Chapter 4)

t time step

ijt machining time of job j on machine i (Chapter 5)

startt starting time of the annealing process

endt ending time of the annealing process

t vector of temperature values
maxt vector of maximal temperature values
mint vector of minimal temperature values

ijτ strength of a trail from node i to node j

Θ fix-point operator applied to action-state values
V , iV state values

*V optimal state values
w∆ vector of weight components’ changes

iX , iY off-machining times on machines B and C

 10

Acknowledgements

The dissertation summarizes the results of my four years research in the field of
machine learning. During this time I learnt many-many new concepts which governed
my work, and formed the way how I look to the world and how I approach to problems
and to the solutions. Here I would like to express my gratitude to many-many people.

First of all I would like to render my acknowledgements to my supervisors
László Dudás and László Monostori who introduced the field of artificial intelligence
and machine learning to me, and who gave me continuous scientific support during the
whole of my research. They taught me how to be able to see the same thing from the
engineer’s as well as from the scientist’s point of view. Many thanks to both of them!

I’m also grateful to András Márkus, József Váncza for their inspiration, and for
the interesting discussions conducted not only in the field of AI, but other interesting
and important topics as well. Special thanks to Anikó Ekárt who helped me to formulate
my mathematical results.

I’m indebted to my former and present colleagues Elizabeta Zudor, Botond
Kádár and Zsolt János Viharos, Gábor Ivánszky who could always give me new ideas
whenever I got into a deadlock. I would also like to thank Tibor Tóth, Ferenc Erdélyi
and Dénes Vadász for revealing me the broadness of the information science. I’m also
indebted to the community of the Department of Information Science at the University
of Miskolc.

Last but not least, I’m especially grateful to my family, Zsuzsa and my parents,
Mária Stefán and György Stefán for their patience in the “hard days” and for the moral
support.

 11

Chapter 1

The Scope of the Research

In this dissertation we focus on the question: How different methods, especially
combined intelligent methods can be used in solving practical problems, to which exact
mathematical solutions can awkwardly be tailored, or do not exist at all. The term
intelligence has many interpretations in the literature. Most of the definitions treat
intelligence as some model of human being’s information processing capability, but
from different aspect. Throughout the dissertation we use the term “intelligent” to
describe all artificial or natural creatures that are able to make decisions based on their
own knowledge. The decision process from this respect is not a pure mechanical task,
but a consideration of different choices.
In Figure 1.1 three areas within the artificial intelligence science to which this
dissertation joins are shown.

Figure 1.1
The scope of the dissertation

Reinforcement learning algorithms model the decision maker as an automata-

like goal-driven agent with the aim of reaching some goal states in the problem
representation state space. For example an automated robot vehicle in a room can have
the goal to reach a certain position; a resource broker agent can have the goal to reach a
certain resource configuration, etc. The agent accomplishes different choices among its
numerous possibilities, but each choice can make different sense in the environment.
Each decision has some immediate or future effects which are expressed in the form of
numeric honor or dishonor, say, of a reward value. The agent utilizes the feedback in
order to try to recognize which actions are appreciated by the environment and which

 12

actions are not. The agent then tries to govern its decision sequence into the direction
that maximizes the “environment’s satisfaction”.

The concept of simulated annealing is based on the analogy of how liquids
freeze or recrystalize. In an annealing process an initially high temperature and
disordered melt is slowly cooled down and reaches thermal equilibrium. As the cooling
proceeds, the system becomes more ordered and approaches a so-called “frozen” state.
The process can be thought as an adiabatic approach to the lowest energy state.
Simulated annealing is analogous to the real annealing process: the state of the thermal
system corresponds to the current solution of the model analogy; the thermal
equilibrium corresponds to the global optimum; the annealing schedule corresponds to
the objective function. The greatest advantage of the method is that it avoids running
into local minima.

Chapter 2 gives an overview on the reinforcement learning concept, and surveys
several reinforcement learning techniques ranging from dynamic programming to
temporal difference learning. All methods have something in common: all algorithms
converge to a so-called optimal decision sequence, or optimal policy which guarantees
the maximization of the total reward given by the environment on the long run. The
chapter concludes with the question: It is good, that all reinforcement learning methods
are convergent, but what about the speed of the convergence? Is there any decision
policy that can be used to boost the convergence? This is the point where combined
simulated annealing and reinforcement learning methods come to the focus.

Chapter 3 reveals a new simulated annealing technique that is tailored to the
goal driven agents. The method is called Boltzmann annealing schedule, and utilizes the
control properties of the Boltzmann distribution computed over the action selection
preference values. As in the case of general simulated annealing algorithms the
annealing temperature value is characteristic to the action selection probability
distribution, in the sense that it influences the way the agent makes its decision. We
show in a theorem that there are two extremes of the distribution that are useful in
practice: 1. when the agent treats all choices equally probable and let itself try actions
that have never been selected before, in the hope of larger reward afterwards, or 2. when
the agent always selects an action that it thinks to be the best. The former is referred to
as exploration, while the latter is called exploitation.

Though the two extremes are reached only in the limit, it is still an interesting
question if there are finite and nonzero temperature values for which the two extremes
can be approached with a sufficiently small error. We show that if the preference values
are bounded, such finite temperature bounds do exist, defining a temperature parameter
domain in which any decision control has effect. Outside this domain there is no
improvement, since exploration or exploitation is already performed accurately enough.

Temperature bounds have several benefits. Firstly they can be computed on- line.
Secondly they can be used to define an exploration-exploitation balancing annealing
schedule if the length of the intended exploration time is given. Thus the agent
approaches to the original decision problem in an inverted sense: “I have certain

 13

amount of time to look for solutions, and after some elapsed time, I would like to have a
feasible solution. It does not matter if it is not the optimal one (it is good if it is the
optimal solution), but it should be one that is practically usable. I would like to avoid
the really bad cases.” This is referred to quasi-optimality, when not the best decision
sequence is sought, but the one which is good enough in practice.

We describe an annealing model which guarantees sufficient exploration at the
beginning of the decision making process, and the range of decision gradually shrinks
around the best decision sequence found as the agent’s experience increases. A general
annealing framework is shown first then special annealing functions are derived from
the general model, which are simplistic enough for practical purposes. At the end of
Chapter 3, computation validation of the temperature bounds as well as Boltzmann
distribution based annealing schedules are shown.

Chapter 4 and Chapter 5 detail two application examples. Chapter 4 concentrates
on Internet Protocol packet routing problems, and introduces a Boltzmann annealing
based Q-routing algorithm. It is shown that our new routing method prevents the router
agents from the classical problems of dynamic routing protocols, and eliminates two
problems of the basic Q-routing algorithm: loop detection and path recovery. Loop
detection in Q-routing refers to detecting and punishing the looping parts of a data
delivery path, while retaining and rewarding those parts that do not contribute to the
loop. Path recovery is the method of diverting the traffic back to the regular (and
optimal) data delivery path from a backup route when the failure of the regular path is
over. Ordinary Q-routing algorithms are not capable of doing this. A distributed
simulator is also developed in Java which emulates the setup and the operation of a real
network.

Chapter 5 illustrates Boltzmann annealing based flow-shop scheduling method
within the framework of virtual manufacturing concept. Given a real manufacturing
system, a virtual service is worked out which maps the real system to computational
objects and utilizes the property that the speed of evaluation of real processes in the
virtual model can be thousand times quicker than executing it in the real environment.
An on-line virtual scheduler service is proposed which works in the virtual
manufacturing space and which uses reinforcement learning principles in implementing
domain-specific heuristics to solve the flow-shop scheduling problem. However there is
a large difference between routing and scheduling: The latter problem is non-
Markovian. We illustrate that the new on- line scheduling concept provides better results
than heuristic approaches and on- line re-scheduling capability in spite of the non-
Markovian environment.

Chapter 6 summarizes the main contributions to the interdisciplinary field of
reinforcement learning, simulated annealing, internet routing and on- line flow-shop
scheduling presented in this document.

 14

Chapter 2

Fundamentals of Reinforcement Learning

In this chapter a general “learning from zero-prior-experience” method, called
reinforcement learning (RL) will be surveyed. RL has its roots in automata theory as
well as in dynamic programming where large computational problems are split into
small sub-problems by setting decision points and using evaluation functions to build
globally optimal solutions on the basis of sub-optimal solutions.

Reinforcement learning adds iterative environment sampling capability to the
original dynamic programming model, thus making it capable of adapting to changes in
the external environment.

2.1 Machine learning1

The definition of machine learning used to be ambitious, aimed at giving an artificial
replacement of human beings’ information processing and knowledge synthesizing
method. Recently the definition has focused around the goal to produce algorithms that
are limited models of human beings’ learning capability but are practically usable in
many real- life applications. According to Kohavi and Provost “machine learning is the
field of scientific study that concentrates on induction algorithms and on other
algorithms that can be said to learn” [R18].

The common point of all artificial learning systems is that all use some internal
data structure consisting of different parameters that may affect the behavior of the
whole system. The artificial learner modifies its internal structures and/or parameters in
order to give improved performance, i.e., improved expected system output for the same
input as time goes on [R26]. The natural learning procedure can also be studied from
this perspective, although it is more complex than its artificial counterpart.

Kaelbling classifies machine learning algorithms in [R16] using different
criteria. One criterion that examines the role of the system’s environment, distinguishes
three groups of algorithms: supervised learning, unsupervised learning and
reinforcement learning.

Supervised learning algorithms have the strongest environment dependency
since these algorithms use an external (and often stationary) reference, called teacher,

1 The terms “artificial learning” and “machine learning” are used as the synonyms of each other
throughout the document.

 15

that can tell the expected input-output mapping all the time, and can directly instruct the
learning system which parameter and how to modify. This type of learning is also
regarded as instructive learning, since the environment directly intervenes into the
internal structure of the learning system [R16]. Commonly used neural network learning
algorithms, such as back-propagation, or classification algorithms fall into the category
of supervised learning.

Unlike supervised learning methods, unsupervised learning methods do not
require any external resource to tell the right output all the time, but have some internal
metric that is applied to build internal multi-dimensional mappings of the parameter
space [R19]. The learning system then either generalizes or specializes on different
sections of these maps in order to introduce new classification rules, or remove old rules
as learning advances. Algorithms of self-organizing maps and Kohonen-networks are
typical examples for unsupervised learning.

The third group of learning algorithms is called reinforcement learning (RL)
algorithms that have both supervised and unsupervised features [R16]. RL algorithms
use the autonomous learning system model, familiar from unsupervised learning, which
means that the system cannot be instructed by any external reference. However, it keeps
interactive relationship with the environment and tries to get some information in order
to build up its knowledge base. The feedback is either utilized to update the knowledge
or simply ignored depending on the learner’s own decision. In fact, the responsibility of
gaining feedback is also on the learner, so this type of learning is also called explorative
learning [R16]. RL methods are capable of learning from zero prior knowledge
provided that the number of learning examples is sufficiently large.

2.2 The reinforcement learning problem

Sutton and Barto in [R46] defines the reinforcement learning problem as the problem of
a goal driven agent which is in contact with its external environment and which
performs interactive actions, gets feedback and gathers experience in order to reach a
specified goal state. RL algorithms are not considered to be a separate group of methods
but all kinds of algorithms that give possible solutions to the defined problem.

The agent can be described by discrete states that are the only parameters that
uniquely define the agent’s behavior. States are either simple data elements or
compound data structures. State information is furthermore discrete in time, which
means that in each time step the agent can be described by a single state. State
representation can either be the result of internal implicit rules, the behavior of the
agent, or the result of the mapping of external perceptions [R46].

When the goal state has not been reached yet, each state is considered as a
decision point, where something must be done in order to get into a new state. Thus, in
each time step, the agent selects an action out of a set of actions, which influences the

 16

environment and makes the agent get into a new state2. The mechanism is shown in
Figure 2.1.

Figure 2.1
Schematic representation of the reinforcement learning model

The representation of actions can be quite different. In the simplest case actions are
stored in look-up tables, but they can be the result of a complex search algorithm or
more complex functions as well [R16]. The agent’s “doing nothing” between time steps,
is also treated as an “identity” action selection.

State changes may be stochastic, which means that selecting the same action
from the same state yields different resulting state. It is expedient to describe the
system’s dynamics using state-action-state probability distribution [R16][R46].

Apart from state change, a reinforcement signal that indicates the environment’s
evaluation is fed back to the agent in every time step. A large positive scalar, for
example, may show that the environment appreciated the selected action honoring it
with a large reward, and a large negative number may be provided if the action selected
is improper in that situation and should be avoided in the future. The agent evaluates the
scalar reward/punishment signal to adjust its knowledge base, which makes possible to
select some better action next time. The goal of the agent is thus, to maximize the sum
of rewards gained in a learning period, called an episode, on the long run. Rewards are
always considered to be external to the agent [R46].

The environment is not supposed to be stationary, but is supposed to be
consistent in rewards, since confusing rewards/punishments in a short period may spoil
the agent’s state-action assignments3. However, rewards are permitted to change on the
long-run. It is also an interesting question where the boundary between the agent and its
environment is. Sutton and Barto gives the answer that “everything that falls outside of

2 In fact state change may occur not only due to the influence of the environment, but to the agent’s
internal mechanisms as well.
3 If the agent has some inertia, the fluctuating variances can be handled.

 17

the agent’s control is treated as part of the environment”. This means that natural
physical boundaries (e.g. learning robot vehicle in a room) cannot always coincide with
the agent-environment boundaries.

Throughout learning, the agent’s task is to find the optimal decision sequence,
which guarantees the maximal sum of rewards in the long run. The way how the agent
makes a decision is called policy [R46] which is defined as a state-action mapping. Let

{ }nsssS ,...,, 21= define the set of states (where n indicates the number of states) and

{ }
)(21

,...,,)(
imiiii aaasA = the set of actions available in state si (where)(im denotes the

number of available actions). Equation 2.1 defines the stochastic policy over the set of
actions, i.e., assigns a probability value to each state-action pair.

ijii pas
j

=),(π , ni ,...,2,1= , mj ,...,2,1= (2.1)

Policies represent part of the agent’s knowledge, since it is crucial information

which action may lead to better results. In order to let the agent discriminate between
different states and different actions, preference values (or simply values) are used.
There are two kinds of values: state values, and action-state values. State values show
how valuable for the agent it is to be in a certain state. The precise definition of a state
value is given by Sutton and Barto in [R16] as “the sum of expected discounted rewards
from the current state to the goal state”. Although it is important to differentiate states
since their utility can be quite different, state values do not take forthcoming state
changes into account. It is the point where action-state values come into the focus: by
definition, action-state values approximate “the sum of expected discounted rewards
from the current state to the goal state selecting a particular action”. Note that policies
which are probability distributions over the set of actions and action-state values are
different, but are in strong relationship with each other. Traditionally, state values are
denoted by V, action-state values are denoted by Q.

2.3 Time-horizon models, Markov property, Bellman optimality equation

Throughout an episode, the agent can receive lots of rewards that, due to the time
locality of the decision, should be taken into account differently. The way, how an agent
treats temporal rewards is regarded as a time-horizon (TH) model. There are three
fundamental TH models: finite horizon, infinite horizon and average reward models.

In the case of the finite horizon model the agent takes a finite time window and
works to obtain maximal sum of rewards within this time period. This method is useful
when the learning process can be divided into episodes and each episode ends up in a
terminal state in finite time steps.

Suppose that the agent looks T steps ahead, let RT denote the sum of rewards on
the given time-horizon from t to T+t:

 18

∑
=

++++ =++++=
T

i
itTttttT rrrrrR

0
21 ...

(2.2)

There are two ways the above equation can be used:

1 at time step 1+t the agent looks 1−T steps ahead, at 2+t , looks 2−T steps
ahead, and looks only one step ahead in 1−+ Tt , or

2 the agent always takes the optimal action looking 1−T steps ahead.
Finite horizon models can only be applied to episodic processes (processes that

can be naturally divided into finite decision sequences), since in the case of continuing
processes (i.e. non-episodic processes), T goes to infinity, and so does RT.

The infinite horizon model introduces a mathematical trick to keep RT in a finite
range even if ∞→T . The discount method weights rewards situated closer to the
decision point with larger values than rewards situated in the farther future. The
discount rate determines the present value of the future reward: reward r received in
time step k is equivalent with reward rk 1−γ received immediately. The discount formula

is as follows:

∑
=

+
−=

T

i
it

i
T rR

0

1γ , 10 ≤≤ γ .

(2.3)

If T is finite and 1=γ then equation 2.3 is identical to equation 2.2. When 0=γ then

the agent has one-step look-ahead, or follows greedy policy. If ∞→T and 1<γ then

the learning task is continuing and the reward is finite.
Average reward models take the average of rewards as shown by equation 2.4.

This method hides differences between the policies that are performing well at the
beginning and worse afterwards, and the policies that are performing better in the final
phase; only the average reward matters.

∑
=

+=
T

i
itT r

T
R

0

1

(2.4)

Let { }aassssP ttt
a

ss ==== + ,|'Pr 1' denote state transition probabilities, that is

the probability of getting into state 's provided that the current state is s and the chosen
action is a. If state transition probabilities are dependent only on s, a, and 's , the
decision process has the Markov property and is referred to as Markov Decision Process
(MDP). A MDP does not maintain any history, i.e. a sequence of states traversed so far

or a set of actions that have been selected. Let { }',,| 1' ssaassrER ttt
a
ss ==== + denote

the expected value of the reward of state transition from s to 's when choosing action a.
a

ssP ' and a
ssR ' are referred to as the environment dynamics of a Markovian process and

 19

these are the only necessary input data that describe the process [R46]. However the
environment dynamics are rarely known, but are estimated from trial and error
experience.

In the previous section the verbal definition of state and action-state values were
given. The formal definitions are as follows for the infinite horizon model:

{ }

==== ∑
=

+
−

T

i
tit

i
tt ssrEssREsV

0

1 ||)(γππ
π ,

(2.5)

and

{ }

====== ∑
=

+
−

T

i
ttit

i
ttt aassrEaassREasQ

0

1 ,|,|),(γπ
π .

(2.6)

where π denotes the policy followed by the agent.

As it is indicated in equations 2.5 and 2.6, values are dependent on policies.
Different policies may result in different values. Also, “value functions define partial
ordering among policies” [R46]. It is established by Bellman in [R4] that if a decision
process is a MDP and the environment dynamics exist (not necessarily known), there

exists a unique policy denoted by *π called the optimal policy for which

)()(
*

sVsV ππ ≥ for all Ss ∈ where π is an arbitrary policy. It is also established that

the existence of the optimal policy determines the optimal state and action-state values
as:

)(max)(* sVsV π

π
= (2.7)

and

).,(max),(* asQasQ π

π
= (2.8)

Bellman also shows that the unique optimal values can be obtained by solving the
nonlinear Bellman optimality equations (BOE) shown in equations 2.9 and 2.10
[R4][R46].

{ } =====
∈

aassREasQsV ttT
aSAa

,|max),(max)(*

*

)(

*
π

π

=

==∑
∞

=
+

− aassrE tt
i

it
i

a
,|max

0

1
* γ

π

=

==+ ∑
∞

=
++

−
+

0
1

1
1 ,|max *

i
ttit

i
t

a
aassrrE γγ

π

(2.9)

 20

=

==+∑ ∑
∞

=
++

−

' 0
1

1
'' ,|max

s i
ttit

ia
ss

a
ssa

aassrERP γγ π

[]∑ +
'

*
'')'(max

s

a
ss

a
ssa

sVRP γ

(2.9)

=

==+= ++ aassasQrEasQ ttt
a

t ,|)',(max),(1
*

'
1

* γ

∑

+
'

*

'
'')','(max

s
a

a
ss

a
ss asQRP γ

(2.10)

Both equations establish a relationship between the value of the current state and the
values of successor states. Szepesvári and Lorincz shows that the unique solution of the
BOE can be found by using fix-point theorem [R49][R50].

The goal of any reinforcement learning algorithm is to find or approximate the
optimal values and the optimal policy by either solving equations 2.9 and 2.10 if the
environment dynamics are known or by estimating them using on- line estimation.

2.4 Solutions to the RL problem

In this section several methods that solve the RL problem will be shown. Solutions can
be of two types: the ones that require exact knowledge of the environment dynamics
()(,',, '' i

a
ss

a
ss sAaSsRP ∈∀∈∀), and build the exact model determining the optimal

policy, and the others that estimate the dynamics and also the value functions trough
trial and error probes. The first type of methods is also referred to as dynamic
programming methods, while the second type as temporal difference algorithms.

2.4.1 Dynamic programming

Dynamic programming (DP) refers to a collection of algorithms that are used to
compute values, as well as optimal policies if the perfect model of the environment is
given. DP algorithms are fairly important since they give theoretical background to all
other RL algorithms. As a general law, all DP methods aim at breaking Bellman
optimality equation (formulas 2.9 and 2.10) into successive iterative steps; the iterated
value approaches to the unique solution of the Bellman optimality equation.

The very first step to determine the optimal policy is to compute values to an
arbitrary policy. This method is known as policy evaluation. The key idea of policy
evaluation is to let the policy be fixed. Then equation 2.9 is re-written as:

 21

[]∑∑ +=+
'

''1)'(),()(
s

k
a
ss

a
ss

a
k sVRPassV γπ .

(2.11)

Note that the policy is not the optimal one, thus the maximization operator cannot be
used. Instead, summation over the state values as well as the known rewards weighed by
the action selection probabilities of each available successor state choosing a particular
action is applied. The summation is done for all possible actions. Also note that the
value function is not the optimal one either. The policy evaluation algorithm is shown in
Figure 2.2.

Figure 2.2
The policy evaluation algorithm

In the algorithm, environment dynamics (a

ss
a

ss RP '' ,) are denoted slightly

differently and all sets are treated as arrays 4. If the number of iterations goes to infinity,
iterative values of V converge to Vπ. This procedure is also referred to as full-backup
method since it takes all possible successor states in a given state into account rather
then a single sample state. The computational complexity of iterative policy evaluation
algorithm is of order)(2mznO where n is the number of states, m is the number of

actions, and z is the number of iteration steps.
The purpose of policy evaluation is to determine better policies. Suppose that the

value πV of policy π is determined by policy evaluation. Suppose further that in the

4 There is no sequence relationship between elements of sets, but there is between the elements of arrays,
at least from the storage point of view. From theoretical aspect this difference does not make sense, and
arrays are used as computational representation of any sets.

input: π policy to be evaluated, θ small error value
input: n number of states, m number of actions
output: V(s)
initialize V(s) for all s∈S
function policy_evaluation(π,θ)
begin
 while ∆>θ do
 ∆:=0;
 for i:=1 to n do
 v:=V(s[i]);
 for j:=1 to n do
 for k=1 to m do
 V(s[i]):=V(s[i])+π(s[i],a[j])P(s[i],a[j],s[k])
 (r(s[i],a[j],s[k])+γV(s[k]));
 end
 end
 end
 ∆:=max(∆,|v-V(s[i])|);
 end
end

 22

current state s there is an action 'a which is different than the one that would be chosen

by policy π . Note that action 'a may yield better reward, than action a . Select action
'a , for which)('')(sas ππ =≠ , where policy)(' sπ sets different action selection rules

than)(sπ at the first step, but they are identical for the remaining steps. It comes from

equation 2.10 that for the modified policy 'π

[]∑ +=+
'

)('
'

)('
'

'
1)'())(',(

s

s
ss

s
ssk sVRPssQ ππππ γπ .

(2.12)

It is proven in [R46] tha t if)())(',(' sVssQ ππ π ≥ , then)()(' sVsV ππ ≥ is also true. The

key question is how to modify the original policy to give improved values. It is also
shown in [R46] that defining a one-step greedy policy, that takes the best action
immediately, meets the conditions of equation 2.12 thus:

[]∑ +=
'

)('
'

)('
')'(maxarg)('

s

s
ss

s
ss

a
sVRPs πππ γπ .

(2.13)

The argmax operator means selecting the action that maximizes the sum. The method of
refining the policy from the values of another policy is called policy improvement.

Given policy evaluation and policy improvement, it is reasonable to join these
algorithms together: values can be computed by policies, and policies can be improved
by new values. It is shown by Sutton and Barto in [R46] that

**210 ...
10

VVV EIEIEIE →→→→→→→ ππππ ππ , where →E

denotes policy evaluation and →I denotes policy improvement. The whole process
that outputs the optimal policy as well as the optimal values is called policy iteration.

In most of the practical cases policy iteration converges to the optimal value too
slowly since the set of states has to be traversed many times and policy iteration
consumes considerable amount of time. An algorithm that combines policy
improvement with one-step policy evaluation is called value iteration. Value iteration
uses the best action’s value (see equation 2.14) instead of doing a full backup on all
possible successor states. The simplification speeds up the convergence:

[]∑ +=+
'

''1)'(max)(
s

k
a
ss

a
ss

a
k sVRPsV γ .

(2.14)

Similarly for action-state values:

[]∑ +=+
'

''1)','(max),(
s

k
a
ss

a
ss

a
k asQRPasQ γ .

(2.15)

 23

The value iteration algorithm is shown in Figure 2.3.
DP methods can be applied to RL problems when the number of states is large;

for smaller states-spaces linear programming as well as direct search algorithms can
also be used to solve equations derived from the Bellman optimality equations.

Figure 2.3
The value iteration algorithm

2.4.2 Temporal-difference learning

Dynamic programming methods take the assumption that environment dynamics
(a

ss
a

ss RP '' ,) are known, which is rarely the case for most practical applications. The

environment dynamics can be estimated from experience if the agent can make a large
number of iteration samples [R46]. Estimated values as well as a

ssP ' and a
ssR ' are backed

up at each time step with respect to the previous samples, which explains the general
name of these type of algorithms as temporal difference (TD) learning methods [R16].

Kaelbling classifies TD methods into model-based and model- free types [R16].
Model-based TD algorithms first build up the environment, then compute state and
action-state values by one of the DP methods. This type of learning often breaks into
two distinguishable temporal phases: environment estimation and computing optimal
policy. On the other hand, model- free methods estimate optimal values and optimal
policy without the explicit knowledge of the environment.

input: θ small error value
input: n number of states, m(i) number of actions in state i
output: V(s) the optimal policy
initialize V(s) for all s∈S
function value_iteration(θ)
begin
 while ∆>θ do
 ∆:=0;
 for i:=1 to n do
 v:=V(s[i]);
 for j:=1 to m(i) do
 Vtemp:=0;
 for k=1 to m(i) do
 Vtemp:=Vtemp+P(s[i],a[j],s[k])(r(s[i],a[j],s[k])+γV(s[k]);
 end
 if Vtemp>=Vmax then
 V[s[i]):=Vtemp;
 end
 end
 end
 ∆:=max(∆,|v-V(s[i])|);
 end
end

 24

The Dyna algorithm of Sutton [R47] is one of the most well-known model-based
algorithms. Dyna operates in a loop of interaction steps. The “experience” samples in

each time step are described by a quintuple of ',',,, asras , the elements denoting state,

action, reward, next-state, and action after the next state, respectively. Due to the nature
of the experience, the agent knows its next state in each time step, so there is no need to
make a full backup on each possible successor state. Using the experience quintuple

{ }a
ssPE ' and { }a

ssRE ' (i.e. the estimated va lues of the environment dynamics) are updated

by simple averaging technique. Equation 2.15 can be rewritten as

{ } { }∑+=+
'

'
''1)','(max),(

s
k

a

a
ss

a
ssk asQPEREasQ γ .

(2.16)

During the interaction cycles, n updates are performed using random exploration
strategy, i.e. the agent should visit all possible states and select all possible actions in
order to get real convergence.

Although Dyna converges to the optimal action-state values, it is
computationally inefficient because of the random exploration. An extension of Dyna
called Queue-Dyna introduced by Moore at al. in [R28] focuses on only the “interesting
parts” of the state space: the algorithm maintains a list of predecessor states for each
state. In addition, states in the list have priority values. The agent selects actions having
nonzero state transition probability and follows not random exploration, but exploration
that is based on the accumulated priority values. Priorities are initialized to zero at the
beginning and then updated to be proportional to the value improvement since the last
improvement of that state.

Queue-Dyna improves Dyna significantly, in terms of the number of
computational steps needed to learn the optimal policy.

The most general model- free temporal difference learning method is called
TD(λ), or SARSA. A two-layered hierarchical extension is called adaptive heuristic
critic algorithm, i.e. an adaptive version of policy iteration. TD(0), later generalized to
TD(λ), was introduced by Sutton [R48], while SARSA was developed by Rummery and
Niranjan [R41].

Let ',',,, asras denote the experience in an iteration step (the name SARSA

refers to the quintuple). The crucial thing for the learner is whether the new state has
made the values better or worse. This quantity is expressed as a temporal difference:

)()'(sVsVr −+= γδ . (2.17)

 25

If 0>δ , then action a increases the value)(sV , otherwise it decreases it. Equation 2.17

can then be used for writing update rule5 to the state values as well as to the action-state
values [R46], such as

βδ+=+)()(1 sVsV kk , (2.18)

or

αδ+=+),(),(1 asQasQ kk . (2.19)

where α and β are the controllable step-size parameters called learning rates and k
denotes the time step [R44]. Equations 2.18 and 2.19 are equivalent to the backup rule
of value iteration (equations 2.14 and 2.15) with the only difference that the sample is
drawn from on- line sampling of the real world rather than by preliminary sampling and
simulation of a known model [R16]. Any algorithm that uses update rules 2.18 and 2.19
is referred to as TD(0) algorithm and it is guaranteed to converge to the optimal value
function, which was established by Sutton [R48].

TD(0) algorithms are special cases of a more general temporal difference
algorithm class called TD(n). While TD(0) algorithms take only the immediate reward
and the value of the next state into account, TD(n) algorithms use n-step look-ahead to
determine the value of the current state. Thus all TD(n) algorithms define δ as

∑
=

++ −+=
n

i
nt

n
it

i sVsVr
0

)()(γγδ .

(2.20)

A more general view of temporal difference methods is provided by TD(λ)

algorithms that use weighed sums of k-step look-ahead rewards, where k takes values
from 1 to n. This means that the rewards expected in the near future or rewards obtained
in the near past weigh more significantly than those farther in the future or past, the
update rule uses the following weighted average:

∑ ∑
∞

=
+

=
+

−−

−+−=

1 0

11)()()1(
j

nt
n

n

i
it

ij sVsVr γγλλδ .

(2.21)

TD(λ) algorithms can be considered as forward view or backward view algorithms.
Equation 2.21 combined with 2.18 or 2.19 defines forward view TD(λ) which is also
called: the theoretical approach. A much more practical model can be gained by using
the backward view: through a memory variable referred to as the eligibility trace.
Eligibility traces are concerned with all states visited so far:

5 The update rule specifies how the agent uses the experience.

 26

=+

≠
=

−

−

tt

tt
t ssse

ssse
se

,1)(

),(
)(

1

1

γλ

γλ

(2.22)

The eligibility of a state is the degree of how frequently it has been visited in the recent
past. Whenever a state is reached, the trace concerning that state is amplified, and
similarly the trace smoothly becomes less influential if the corresponding state is not
visited. The temporal difference of the backward view TD(λ) is defined as:

[])()()'(sesVsVr t−+= γδ . (2.23)

Update of eligibility traces can either be online, when backups are performed in each
time step, or off- line, when a summary backup is carried out at the end of the episode6.
Any backward view TD(λ) method is easy to implement; in Figure 2.4 the on- line
version is shown.

Figure 2.4
The on- line, backward view TD(λ) algorithm

It is proved in [R46] that backward view and forward view TD(λ) algorithms implement
the same weight- layout, and thus are equivalents of each other.

The actor-critic methods separate policy and value structures, thus introducing
an implicit hierarchy in the system. The policy is bound to the actor of the process, and
the value to the critic. The actor follows policy π and whatever this policy is, the critic
evaluates it and makes changes. The concept is shown in Figure 2.5. Control signal c
has similar functionality to the reward signal, but inside the learning agent.

6 In case of episodic processes.

input: n number of states, T number of steps
output: V(s) the optimal value function
initialize V(s) for all s∈S
function TDλ(n,T)
begin
 for j:=1 to T do
 choose action a in state s;
 take s’ and r;
 δ:=r+γV(s’)-V(s);
 e(s):=e(s)+1;
 for i:=1 to n do
 V(s):=V(s)+αδe(s);
 E(s):=γλe(s);
 end
 s:=s’;
 end
end

 27

Figure 2.5
The actor-critic agent architecture

2.5 Q-learning

Although Q-learning implements a kind of TD learning, due to its practical relevance it
is discussed in a separate section. The algorithm of Q-learning was introduced by
Watkins and Dayan in [R60], where the complete proof of the convergence to optimal
action-state values as well as optimal policy is given. The key idea of the proof is to
replace the agent’s “real process” to an equivalent abstract MDP, a “biased coin
flipping” task.

It is common in TD-learning and in Q-learning that a sample experience
sequence is given, i.e. the agent senses current state, selected action, given reward, next
state and next action quintuples, and whatever would follow next, the agent considers
optimal action choice then. Experience quintuples are denoted in the usual way by

',',,, asras and are supposed to be random samples of a given probability distribution.

Having selected an action that provides the best action-state value, the optimal

state value turns out to be),(max)(** asQsV
a

= .

Writing a backup rule to Q-learning can be done similarly to writing a backup
rule to the general model (equation 2.15):

)','(max),(
'

*

'
''

* asQPRasQ
s

a

a
ss

a
ss ∑+= γ

(2.24)

Note that there is no stochastic action selection, since both the next action and the next
state are known. Also note that the policy is implicit, i.e. the best action is as follows:

),(maxarg)(** asQs
a

=π .

If the update rule is given as

 28

[])'(),()1(),(1111 sVrasQasQ kkkkkk γαα ++−= ++++ , (2.25)

then it is true that the sequence of Q-values approach Q*, provided that kα is a decaying

sequence of the step-size parameter α , and the number of trials sufficiently cover all
state-action pairs as the number of trials goes to infinity. The α parameter is also
referred to as learning rate, because it controls at what rate the learner allows to modify
the values.

Theoretical guarantee for convergence can only be given if the Q values are
stored in look-up tables (see section 2.6). A possible Q-learning algorithm is shown in
Figure 2.6.

Figure 2.6
The Q-learning algorithm

Q-learning is said to be model- free since there are no explicitly expressed

environment dynamics in the model. It is also true that *Q values are approached

sufficiently even by following greedy policy (i.e. selecting the best action in all states).
No matter what policy the agent follows, Q-learning will surely converge. This property
is called policy independency or exploration insensitivity and discussed in detail in
[R16]. However, the speed of convergence, which has serious feasibility impact to real-
life applications, strongly depends on the exploration vs. exploitation issue (see in
section 2.7). In [R49] there is theoretically grounded estimation on the speed of
convergence depending on the learning time provided that the discount factor is
bounded and the state-action pairs are sampled from a fixed probability distribution.

The convergence of Q-learning can be boosted up by rearrangement and
simplification of the update rule as it is shown in [R60]. The result ing algorithm is
based on the observation that the step-size parameter can be dependent on the number of
times the current quintuple occurred in the past. If for example a quintuple has occurred
many times, the corresponding step-size parameter may be increased. However, there is

input: n number of states, T number of experience tuples
input: γ discount parameter, α learning rate
output: Q(s,a) the optimal action-state values
initialize Q(s,a) for all states and actions
function Q_learning(n,T)
begin
 for i:=1 to T do
 choose action a in state s that maximizes Q(s,a);
 take s’,r;
 Q(s,a)=(1-α)Q(s,a)+ α(r+γmaxQ(s’,a’));
 s:=s’;
 end
end

 29

a price for the speedup: the agent must store the quintuple-history centrally, which may
exclude any distributed applications.

A generalized convergence model to Q-learning can be found in [R50] where a
generalized MDP process is used. All operations (summation, maximization, etc.) are
expressed as generalized operators on update rules and values. If the operators are non-
expansions, learning rates are decaying and the discount rate is definitely smaller than 1,
the optimal Q-values are the unique solution (fix-point) of the following equation:

[]),(),(asQasQ =Θ , (2.26)

where operator Θ is the dynamic programming operator, defined in equation 2.27.

[] ∑+=Θ
'

'
'')','(max),(

s
a

a
ss

a
ss asQPRasQ γ (2.27)

It is also presented in [R50] that operator Θ can be approximated by successive values,
without hurting the convergence.

2.6 Maintenance of state information

All the algorithms mentioned so far assume that values are stored in a look-up table.
However look-up tables may raise memory requirements to the limit of infeasibility
especially for large or continuous state-spaces. There are several techniques that allow
storing values in a more compact form than lookup-tables. These techniques, which
allow compact storage of learned information and transfer knowledge between similar
states and actions, are called generalization methods [R16].

If both the number of states and the number of actions are relatively large,
storing values in a neural network is a reasonable choice. Consider a multi- layer back-
propagation neural network for which the input is the state and action information (in
any representation), and the output is the action-state value. In each update step training
takes place until the expected output of the network approaches its calculated value at
sufficiently small error level. Neural network learning rules and RL update rules can be
combined in a single equation such as:

),,('),,('),','('max
'

www? w w asQasQasQr
a

∇

−+= γα ,

(2.28)

where w denotes the weight vector (parameter vector) of the neural network, 'Q the Q-

value estimated by the network, and w∇ denotes the partial derivatives of the Q-value

with respect to each individual weight parameter [R10]. This solution saves memory

 30

and space at the price of extra processor cycles needed to train the network in each
update step.

Another possible solution is to use decision trees instead of function
approximation for basically doing the same job: mapping the description of each state-
action combination to values. Decision trees can be applied in discrete Boolean
environments [R8]. At the beginning of the learning process the agent learns Q-values
supposing that the whole state space consists of a single state. In parallel there is another
process that examines if there is any attribute in the state description that may influence
Q-values. If such attribute is found, it is used to split the state space into two parts, into
two states.

If the number of actions is relatively large, but the number of states remains
reasonably small, the method of Gullapalli can be used: actions are represented as
probability variables sampled from a normal probability distribution with specified
mean and standard deviation [R12]. Actions are selected randomly with respect to the
defined probability distribution. Those actions that perform better than others make the
mean parameter to shift toward the selected action, while narrowing the standard
deviation. On the other hand, if all actions perform poorly the standard deviation is
adjusted to be large allowing a large scale of actions to be selected.

2.7 Policies, exploration vs. exploitation

Policy, as defined in section 2.1, is a mapping from states to actions in case of
deterministic policies, and state-action pairs to probabilities in case of stochastic
policies. The policy of the agent is not the same all the time; it is allowed to change as
time goes on, as it should converge to the optimal policy. Policy is the unique factor that
determines the behavior of the agent (i.e. “the way how it selects actions”). The policy is
said to be greedy if the agent chooses the best action, i.e. the action with the largest
value with respect to its actual knowledge.

In each time-step the agent has a dilemma: either to explore or to exploit. There
are actions that are well-discovered by the agent, and it can tell at a great level of
confidence whether selecting those particular actions is expected to be honored or
dishonored by the environment. When the agent selects sure actions, or follows greedy
policy, its behavior is regarded as exp loitation. On the other hand, there may be actions
that are not well discovered, or not discovered at all. These actions, however, may be
rewarded worse than well-known actions, but may lead to promising large rewards few
steps later. So, if the agent has more time to discover, it can select a non-greedy,
discovery action, i.e. it explores the environment. Since the agent knows nothing about
the environment at the beginning, it can start up with exploration only, which may
gradually turn into exploitation as learning goes on. The crucial question that can be
addressed is: How can the two extremes, i.e. exploration and exploitation be balanced?
Solutions to this problem can fall into two fundamental categories: decaying exploration

 31

and persistent exploration [R44]. In the case of decaying exploration the explorative
behavior gradually turns to exploration, and having exceeded a time threshold, the agent
never goes back to exploration without external intervention. The advantage of decaying
exploration is that the selected actions converge to the optimal actions, at the price of
being insensitive to changes in the environment, when the exploration cycle is over. On
the other hand, persistent exploration learning policies keep their exploration capability
forever, but at the price of slow convergence7 [R44].

Greedy policy is a singular persistent exploration learning policy. The problem
with pure greedy exploration is that the agent can easily run into local extreme, and it
cannot exploit all possibilities provided by the environment. However, if the agent has
firm knowledge on not only the immediate rewards, but future rewards as well, this
policy should be used.

Greedy policy can be naturally extended when exploration-exploitation has a
certain time or probability window, i.e. the agent makes exploration at certain time
window, and makes exploitation throughout the remaining time. This policy is called ε-
greedy, and it can be illustrated as follows: at each time step a ε-biased coin is flipped,
and if the output turns out to be heads the agent makes exploration or else it makes
exploitation. ε-greedy policies are typical examples of persistent learning.

It is possible to implement decaying exploration using Boltzmann formula. In
this case a control parameter called temperature is used to determine whether
exploitation or exploration step follows. Boltzmann distribution based exploration will
be discussed in detail in Chapter 3.

There is a general policy class called restricted rank-based randomized (RRR)
policies that involve all previously mentioned learning policies. RRR uses rank vector
to indicate the relevance of each available action. Though ranks are assigned on the
basis of action-state values, the decision itself is done on the basis of ranks, not on the
basis of values.

Many of these techniques focus on the convergence in a certain regime. It is
appropriate when the environment is not allowed to change. In most of the practical
applications the environment is not stationary, thus repeated exploration cycles should
be executed.

2.8 Discussion

In this chapter the reinforcement learning concept and the two major classes of
reinforcement learning algorithms have been surveyed. Dynamic programming
algorithms give theoretical grounds to RL methods, but suffer from the lack of
information about environment dynamics. A much more practical approach is to use
temporal difference learning that builds up the estimate of the environment by taking

7 The system will not converge in the classical terms of convergence.

 32

experience samples. Convergence of temporal difference learning algorithms is
theoretically grounded, but the speed of convergence is still a key issue. Exploration-
exploitation balancing methods are used for speeding up convergence, as well as giving
exploration schedules.

 33

Chapter 3

Annealing Schedules Using the Boltzmann
Distribution

In this chapter an exploration and exploitation balancing method using the Boltzmann
distribution will be introduced. First we examine the convergence behavior and other
relevant properties of the Boltzmann formula then we derive temperature bounds which
mark a feasible annealing domain.

In each learning period the agent determines what proportion of the episode is
spent on exploration and how much time it intends to exploit its actual knowledge to
maximize the sum of expected rewards. Given the temperature bounds, and the length
of exploration time we propose an annealing schedule technique based on function
interpolation, which gradually turns the agent’s decision making behavior from
exploration to exploitation.

The annealing model is computationally validated on a general test-bed called
“n-armed bandit problem” that is also used in automata theory. The results of the
chapter are based on our paper [P3].

3.1 Introduction

In Chapter 2 an overview of general reinforcement learning solutions has been given.
We discussed the model of the goal-driven, reward-maximizing learning agent, and
possible solutions to the defined RL problem. We concluded that the agent can make its
decision in two different ways: either it makes exploration, i.e. selects non-profitable
actions in order to find better states afterwards, or it makes exploitation, i.e. it uses its
actual knowledge to select the best action to get large immediate reward. Two important
quantities were also introduced: state values and action-state values which indicate the
utility of each state and each state-action pair, respectively. These quantities express
action choice preferences. The key questions are, how the agent should turn its behavior
from exploration to exploitation, or when it should turn back into exploration again.

Balancing between exploration and explo itation is, however, a difficult task.
Sandholm and Crites suggests problem dependent heuristic solutions to exploration
exploitation balancing [R32][R42]. Sutton et al. in [R46] also discuss that the heuristic
solutions “make strong assumptions about stationary and prior knowledge that are
either violated or impossible to verify in applications”.

 34

In this chapter we propose an exploration-exploitation balancing method based
on simulated annealing, which is both theoretically grounded and problem-independent.

The decision making problem can be defined as follows: Suppose that the agent
has n action choices denoted by naaa ,...,, 21 at time step t. For each action a finite

preference value 8 is assigned (or accumulated), which represents the “utility” of the
particular choice. Preferences corresponding to actions are denoted by nQQQ ,...,, 21

which are integers and nQQQ ≤≤≤ ...21 . Suppose that the agent defines a probability

distribution over the preference values and selects an action randomly. The control
parameters that influence how the actions are selected are the parameters of the
probability distribution. A special way of assigning probabilities to values is the
Boltzmann distribution proposed by Sutton in [R46], defined as

∑
=

=
n

j

T

Q

T
Q

i j

i

e

e
p

1

, ni ,...,2,1= .

(3.1)

The Boltzmann-distribution has a single non-negative real-valued control parameter T
called the temperature that governs the action selection policy. (Note the analogy with

statistical mechanics where the exponential is
kT
Ei− where Ei is the potential energy, and

k is Boltzmann's constant.)
There are several appealing properties of the Boltzmann formula (equation 3.1).

Two of the most important properties are the invariance property and the scaling
property. Both are introduced by Mahnig et al. in [R22] in relation to Boltzmann-
selection scheduled genetic algorithms.

Property 3.1: If cQQ ii +=ˆ , where ni ,...,2,1= , c is an arbitrary constant value and p̂

denotes Boltzmann probability distribution over Q̂ , then ii pp =ˆ , for ni ,...,2,1= . In

equations: i
n

j

T
c

T

Q

T
c

T
Q

n

j

T

cQ

T
cQ

n

j

T

Q

T
Q

i p

ee

ee

e

e

e

e
p

j

i

j

i

j

i

====

∑∑∑
==

+

+

= 111

ˆ

ˆ

ˆ .

Property 3.2: Let ii cQQ =ˆ denote “scaled” preference values, where ni ,...,2,1= , and

c is an arbitrary constant value. Let p̂ denote Boltzmann probability distribution over

Q̂ using cTT =ˆ as temperature value, then ii pp =ˆ , ni ,...,2,1= .

8 Throughout the chapter terms “preferences”, “action preferences” and “action state values” are used
interchangeably covering the same meaning.

 35

Property 3.2 means, that if (for some reason) preference values are re-scaled, in order to
have the same distribution, temperature values should also be modified. The property is
of great importance in practical applications where preferences may grow without
converging to a specified value due to the changes in the environment and are needed to
be re-scaled periodically.

3.2 The convergence property of the Boltzmann formula

Theorem 3.1 summarizes the behavior of the Boltzmann distribution with respect to the
convergence of the temperature values to zero or to infinity.

Theorem 3.1: If temperature T approaches infinity, the action selection probability of
all the actions approaches the uniform distribution; if T goes to zero the probability of
selecting the strictly highest Q-valued action goes to 1, while the selection probability of
others’ goes to 0. If there are k maximal equally preferred actions, the probability of

making selections from among these actions goes to
k
1

 as T goes to zero.

Note that T may never reach 0. Also note that if T goes to 0, the action selection
becomes more deterministic. Proof to theorem 3.1 can be found in Appendix A.

3.3 The accuracy of the approach

It is proven that the Boltzmann distribution converges to uniform distribution as T goes
to infinity and to the greedy distribution9 as T goes to 0. It is also an interesting question
to what degree the formula approaches the extremities when parameter T changes, if the
Q-values are kept constant. The question can be reformulated: Can a maximal
temperature be found so that the probabilities pi approach the uniform distribution with
any small error, say ε , and also, can a minimal temperature be determined when
approaching the greedy distribution is also guaranteed with a sufficiently small error.
The answer to both questions is summarized in the following theorem:

Theorem 3.2: Consider 0>ε , as a small positive number, and an upper and a lower
bound on Q-values, Qmax and Qmin. The following inequalities are held under these
circumstances:

9 Greedy distribution is used as a synonym for a distribution in which the probability of selecting a single
action is 1 and those of the others are 0.

 36

(a) ε<−
n

pi
1

 if

 +

−

−
>

ε
ε

n
n

QQ
T

1,
1

1
minln

minmax , for ni ,...,2,1= and

(b) ε<− ip1 if

−

 −

<
)1(1

1
ln n

T

ε

κ
, where ijQQ ji ≠> , , ji

QQ
ij

nj
QQ

ji

−=

≠
≠

= ,..,1
minκ .

Note that κ is the minimal difference between the largest and second largest Q-value,
and due to the integer nature of the preferences, the difference is minimally 1. Also note
that the maximal Q-value is unique.

The minimal T for which the inequality (a) is satisfied will be referred to as Tmax
(or exploration temperature) and the maximal T for which inequality (b) is satisfied will
be referred to as Tmin (or exploitation temperature) throughout the rest of the chapter.
The proof of the theorem can be found in Appendix A.

Property 3.3: In Theorem 3.2 (a) the denominator’s independent variables are
restricted and cannot take any real value. If 1>εn , then the argument of the logarithm
function is negative, so temperature values exist only on the set of complex numbers.

However, if

n
1

<ε

(3.3)

is true, then the denominator of the inequality in Theorem 3.2 (a) becomes

),1ln(1,
1

1
minln εε

ε
nn

n
+=

 +

−

(3.4)

since ε
ε

n
n

+>
−

1
1

1
, if 10 <≤ εn . εn≤0 is trivial, since neither the number of

actions, nor an interval radius can be negative, 1<εn is equivalent to 3.3.

A key question is: given the conditions above, is there any T value satisfying the
inequality of Theorem 3.2 (a), as well as minimizing),(εnT . Constraint 3.3 can be

rewritten as 1=+νεn , where ν is a small positive redundancy variable, thus

.
2ln)lim2ln()2(limln)2ln(lim

),(min minmax

0

minmax

0

minmax

0

minmax QQQQQQQQ
nT

n

−
=

−
−

=
−

−
=

−
−

=
→→→

ννν
ε

ννν
ε

(3.5)

 37

Similarly, the extreme value of the temperature expressed in Theorem 3.2 (b)
can also be determined, thus the inequality of Theorem 3.2 (b) can be rewritten as:

.
)1ln(2 −

<
n

T
κ

(3.6)

Note that using this simplification implies 2>n .

Property 3.4: The computational cost of determining temperature bounds is)(nO

where n is the number of alternatives in the unsorted preference-values case and)1(O

in the sorted case.

3.4 The continuous case

Suppose that preferences and probabilities are not discrete values but functions of some
other quantity. Thus,]1,0[],[: →bap and],[],[: cbbaQ → , i.e. map real intervals to

real intervals. Both functions are bounded, continuous10, and R⊆],[],,[dcba . In this

case the formula

ξ
ξ

de

e
xp

b

a

T
Q

T
xQ

∫
=)(

)(

)(

(3.7)

also convergent (where],[bax ∈), as T goes to zero or infinity, and the temperature

bounds are as fo llows:

2ln

)(min)(max
],[],[

max

xQxQ
T baxbax ∈∈

−
=

(3.8)

0min =T (3.9)

Notice that)()(min yQxQ

yx
−=

≠
κ , and in the case of continuous functions

0)()(minlim =−
≠→

yQxQ
yxyx

, where],[, bayx ∈ , thus 0=κ .

10 In the case of using Lebesque-integral instead of Riemann-integral, this restriction is even unnecessary,
which also yields that ? is nonzero.

 38

3.5 Illustration of the temperature bounds theorem

Preference values of a 7-way example decision problem can be represented by a vector
of preference values as follows

{ }100,25,50,140,128,101,10=q .

Temperature bounds for this problem are calculated by using equations (3.5) and (3.6),
as 201max =T and 5min =T . Figure 3.1 shows the probability distribution of this

decision problem at temperature levels maxT and minT . It is easy to observe that the

probability distribution is almost deterministic around minT and follows uniform

distribution around maxT . Note that the example uses the simplified equations which do

not require any error level.

Figure 3.1
Probability distribution of a 7-way decision problem

3.6 Annealing schedules

While the theorems in sections 3.3 and 3.4 establish temperature bounds, this section
deals with the question how interpolation methods can be used for determining an

 39

appropriate annealing schedule between these bounds on a given time horizon. A
method based on differential equations will be introduced that transforms a
parameterized temperature-time function to a recursive annealing schedule function
which can be successively applied by the learning agent. Formula 3.10 shows the
general iterative function

[])()(1 kk tTftT =+ , (3.10)

where)(tT denotes the time dependency of the temperature. Iterative application of

3.10 is applied to descent temperature from maxT to minT .

First we show the general method, then, four special annealing functions will be
derived: linear, exponential, quadratic and inversely quadratic annealing.

3.6.1 General annealing method

Given a parameterized function of temperature in the following form

∑
−

=

=
1

0

)()(
n

i
ii tfctT ,

(3.11)

where constants ic are the parameters being sought, and)(tf i functions are arbitrary

continuous functions.
The derivative of equation 3.11 is expressed as

∑
−

=

=
1

0

)()(n

i

i
i dt

tdf
c

dt
tdT

.

(3.12)

In order to determine all parameters, preconditions must be set, such as

jj TttT ==)(, 1,...,1,0 −= nj (3.13)

where jT is an arbitrary temperature value. Note that all jT values are recommended to

fall between maxT and minT . However, this is not vital, but as a direct consequence of

Theorem 3.2 there is no reason to set any temperature value outside the bounds.
For simplicity, vector abbreviations are used. Let vector { }110 ,...,, −= nTTTt denote all

the temperature values set by boundary conditions in 3.13. Let { }110 ,...,, −= ncccc denote

the parameter vector, and let { })(ji tf=F be the matrix of function values at

110 ,...,, −nttt .

Parameters can be determined by solving the following linear equation system:

 40

Fct = (3.14)

thus if F can be inverted and F-1 denotes the inverse

tFc 1−= . (3.15)

Equation 3.12 is to be used to get an iterative annealing function:

max)0(TtT == ,

∑
−

=
+ +=

1

0
1

)(
)()(

n

i

k
ikk dt

tdf
ctTtT .

(3.16)

Equation system 3.16 gives the general annealing schedule model. Simple methods such
as linear or quadratic schedules are treated as special cases of the formula above.

3.6.2 Linear annealing

Equation 3.16 determines the general form of recursive annealing schedule. In practical
applications polynomial functions are used. The simplest polynomial is the linear
function interpolated between the points determined by startt , endt , maxT and minT .

The linear annealing function is given in the following form:

01)(ctctT += , (3.17)

where startt denote the beginning of the annealing process, endt denotes the end, 0c and

1c are constants. The derivative equation with respect to variable t is as follows:

1c
dt
dT

= .
(3.18)

The boundary conditions in this case are defined as follows:

max)(TttT start == , (3.19)

min)(TttT end == . (3.20)

Substituting 3.19 and 3.20 into 3.17 yields
startend tt

TT
c

−
−

= maxmin
1 . Equation 3.18 can also be

rewritten as dtcdT 1= , that is the differential form of tcT ∆=∆ 1 . The later difference

equation is used for writing the recursive form as follows:

 41

max)0(TtT == , (3.21)

startend
kk tt

TT
tTtT

−
−

+=+
maxmin

1)()(.
(3.22)

3.6.3 Quadratic, inversely quadratic and exponential schedules

Following similar reasoning as in the case of linear annealing, higher order polynomials,
such as

0)(ctctT n
n += (3.23)

take the following recursive form:

max)0(TtT == , (3.24)

1maxmin
1)()(−

+ −
−

+= n
n
start

n
end

kk t
tt
TT

ntTtT .
(3.25)

Figure 3.2 shows different annealing schedules where 0
4

4)(ctctT += , 0
2

2)(ctctT += ,

01)(ctctT += , and 01)(ctctT += − when 1000max =T , 100min =T , 0=startt ,

150=endt .

3.7 Variable preferences

The annealing models we have shown so far assume that all preference values are
constant. In real- life applications, however, this is not true, since preference values are
allowed to change in time, as a result of learning. Varying preferences may also yield
varying temperature bounds if the maximal, the second largest or the minimal values
change. Since both maxT and minT are bounds, it is possible that the Boltzmann-

distribution defined by equation 3.1 may approach the greedy distribution at larger
temperatures than minT and uniform distribution at temperatures smaller than maxT with

error level of ε . If the temperature bounds are allowed to change in a hysteresis- like
manner, the system is much more fault-tolerant, in terms of following the theoretical
bounds much more accurately.

 42

Figure 3.2
Polynomial annealing schedules (equation 3.25) satisfying boundary conditions for

different values of n

In many cases temperature bounds may change significantly especially when
extra large rewards or penalties occur. The fundamental rule of thumb in this case is that
bounds must be changed in a discrete-valued manner, i.e. two versions of bounds are
maintained: the original version and an actually computed version. Let the actual value

of the upper bound be denoted by '
maxT and the original value by maxT , and similarly for

the lower bound: '
minT and minT . The annealing schedule is always defined for the

original temperature values, maxT and minT .

If the actually computed maximal temperature value '
maxT grows beyond a

certain limit, say, maxcT where c is a constant, the new value of maxT is set to '
maxT and

an annealing sub-period takes place. (The constant is referred to as re-scale factor.) The
similar is true for minT . An annealing sub-period means a new annealing process from

the points determined by the new, varied temperature values and the current time, as a
start point of the sub-period, and the original end-point. The re-annealing principle can
only fail if one of the preference values grows significantly beyond that of the others at
a larger pace than annealing could decrease the temperature. The rule of thumb for this
case, which is in harmony with the way how the re-scaling automatically works
anyway, is that if the preference of one action grows to a large value, the agent is
convinced of selecting this action later in the exploitation phase, since it is significantly

 43

better than the others. In this situation the decision-making agent would not need
annealing at all.

In Figure 3.3 a linear annealing re-schedule is shown. maxT is computed as 10 at

the beginning, temperature re-scale factor on the maximum bound is set to 1.5, minT is

computed as 0.3, exploration time is set to 2/3 of the whole episode time. It can be seen
that the temperature decreases linearly from time step 0 until time step 50. At this point
preferences are modified significantly, which influences temperature bounds that are re-
scaled, i.e. increased over 1.5 times of the old value. Maximal temperature is set to 15 at
this point and a new and quicker scheduling sub-period continues as the temperature
reaches minT at time step 66.

Figure 3.3
Linear re-annealing process

3.8 Computational validation of the annealing model

Although the annealing schedule model has theoretical roots, it is necessary to validate
it. There is a famous test-bed in automata theory known as the “n-armed bandit
problem” [R46].

Consider the following learning task: An agent faces to a decision problem in
which there are n choices. Selecting one of the options results in a reward taken from a
stationary probability distribution. The value of each choice is consistent, i.e. repetitive
samples are taken from the same probability distribution, thus each decision result is

 44

treated as a probability variable which is unknown to the agent. What the agent can do
is to make estimates on these variables through trial and error.

The bandit problem has practical interpretations as well: the n-armed bandit is
the n-dimensional extension of the one-armed bandit slot machine. The agent selects an
arm, makes a pull, then either he wins or he looses, in numerical terms, it receives
reward of 1 or 0 (i.e. he makes a play). The goal is to find a “winner strategy” in which
the agent maximizes the amount of rewards obtained through series of plays, episodes.

The agent can basically do two things: if it has lots of pull opportunities, it is
better to explore which options (arms) are better, and which arms are worse than the
other ones. When he has not too many pulls remained, it is better to select the action
that he thinks to be the best, it is better to exploit the knowledge.

As a validation, a program written in C has been used for studying different
action selection strategies and annealing schedules. Parameter setting of the test-bed is
shown in Table 3.1.

Parameter Value
Number of actions 10
Number of plays in an episode 100
Number of episodes 10000
Annealing method linear, polynomial annealing,

variable temperature bounds

Table 3.1
Properties of the n-armed bandit test-bed

The number of episodes is set to a large value in order to average individual differences
and concentrate on the average behavior. All the results presented in the rest of the
section are averages on successive episodes. Exploration/exploitation balancing works
well if the number of plays is relatively large to the number of choices, in this case the
pull number 100 is sufficiently larger than the number of choices 10. (Note that plays in
this case function as time steps.)

In Figure 3.4, comparison of different annealing schedules is shown. The
continuous line denotes ε-greedy action selection schedule when ε is set to 0.1; the x-
axis denotes the number of plays and the y-axis denotes the development of reward
obtained during the play. The line entitled by “boltzmann-t1-lin-fix” indicates
Boltzmann distribution based action selection using fixed temperature bounds, linear
annealing schedule and the whole episode was dedicated to exploration (i.e. the end of
annealing schedule is coincident of the end of the episode). As another strategy “t1/10”
indicates that only 10 percent of the episode is spent on exploration, and the rest of the
time was spent on greedy action selection. Similar comparisons of different strategies
can also be found in [R46].

 45

Figure 3.4
Comparison of different annealing strategies, 0.1-greedy vs. Boltzmann action selection

with different annealing schedule length

It is easy to see that the reward development as well as the final sum of rewards is
dependent mostly on the percent of time spent on exploration. 0.1-greedy strategy
shows slightly better performance than random behavior on ave rage since the
exploration was continuous (i.e. with percent of 0.1 the agent explore) and the gain was
distributed linearly along the development of the reward. Increasing ε to 1 turns the
system to totally random; decreasing ε to 0.05 gives better performance again. Note that
pure greedy method is missing from the comparison since it is not considered be a “self-
initializing” method; the agent has zero initial estimates on the expected reward11 so
“greediness” is desirable only at a later stage.

Boltzmann distribution action-selection, that spends the whole time on
exploration, gives better results than 0.1-greedy method, but only from the middle of the
episode. The reason why is that it explores too much of its time, and the agent starts to
use its knowledge only at the end of the period.

Boltzmann selection having half-time exploration slightly diverges from the 0.1-
greedy reference approximately from the middle of the episode. At this point the
behavior of the agent gradually turns from exploration to exp loitation, and while it gives

11 If greedy algorithm is used with zero initial values, the average behaviour turns to be random, since
further selections are dependent on the first one.

 46

similar results to random behavior in the first half, the agent uses its knowledge to
perform better and give better final reward in the second half.

The curve entitled by “boltzmann-t1/10- lin-fix” shows that asymptotically the
same amount of reward development can be gained, but only at an earlier stage when
exploration finishes at 12-15 percent of the whole time. This also results in a better final
reward, since exploration stops at an earlier stage and the agent chooses the best action
more times. There is an important remark here: Within a certain time-interval the
resulting reward is not significantly influenced by the length of the exploration period
(Figure 3.5), but there exists an exploration time at which the resulting reward is
maximal and this point is around 10 percent of the episode time in this example, that is
the proportion of episode plays to the number of choices.

Figure 3.5
Maximal reward vs. exploration time diagram. The maximal reward can be obtained

when exploration time is around 10 percent of the whole episode time

In Figure 3.6 the same annealing schedules are shown as in Figure 3.4, but using
variable temperature bounds. The temperature re-scale factor is set to 1.5 for maxT and

0.75 for minT , i.e. T is re-adjusted when it grows above max5.1 T or drops below min75.0 T .

It can be seen that the resulting rewards are better for longer exploration periods as well,
than those of fixed temperature bounds. In the case of full- time annealing (exploration
during the whole episode) with fixed temperature bounds, the test produces final reward
of 52, while using the same schedule, but variable temperature bounds it produces

 47

around 56. And similarly halftime-exploration annealing schedule (denoted by “t1/2”)
that uses fixed bounds produces sum of reward of 65, while that uses variable bounds
produces results above 67. A reasonable explanation for the phenomenon is that the re-
annealing “shakes-up” the system.

Figure 3.6
Annealing schedules us ing variable temperature bounds

3.9 The use of Boltzmann distribution in other fields

Using Boltzmann distribution in machine learning algorithms has been popular in the
late 1990s. Apart from reinforcement learning, there are two other fields where
Boltzmann distribution is used: genetic algorithms (GA) and ant colony systems (ACS).

In [R22] a novel genetic algorithm is proposed which operates on closed
population and aims at finding the global extremes of the fitness function of population
elements. A probability value is assigned to each population member, which forms
Boltzmann distribution over the whole population set. An annealing schedule is used for
replacing the existing probability distribution to a new one, which is also a Boltzmann
distribution. The new distribution increases the average fitness, thus giving better and
better population.

Decision problems also appear in ant colony systems, where an agent (in this
case it is called ant) faces to either follow a known trail reinforced by other ants, or to

 48

choose a different path in every time step. Each available path, from node i to node j, a
probability value is assigned to a trail as follows

∑
∈

=

allowedispathj
ijij

ijij
ijp

__

βα

βα

ητ

ητ
,

(3.26)

where ijτ is the strength of the trail on the path, ijη is the visibility factor and a, ß are

control parameters. As an alternative to equation 3.26 a two-dimensional Boltzmann
distribution can also be used:

∑
∈

=

pathsallj

ij ijij

ijij

ee

ee
p

_

βηατ

βηατ

.

(3.27)

In equations 3.26 and 3.27 a and ß are referred to as “inverse temperature” parameters.

3.10 Discussion

In this chapter a simulated annealing concept tailored to reinforcement learning
was shown. The agent’s decisions are performed as a result of a random action selection
based on a Boltzmann distribution. The nature of the decision is determined by a single
control parameter called the temperature. It was shown that there are two characteristic
distribution types exist with respect to the value of the control parameter, greedy and
uniform distributions. We have shown that both can be approached with a sufficiently
small error using finite temperature values; theoretically grounded estimations of these
bounds were given.

The agent’s decision making policy can be modified by varying the value of the
control parameter in the determined temperature range marked by temperature bounds,
either manually or in a dynamic way, by applying annealing schedules determined by
temperature bounds and an annealing/exploration time period. The general annealing
framework and the derivation of simple schedules have also been shown. The whole
model was validated on the popular “n-armed bandit problem” and was found to
perform better than any other schedules.

 49

Chapter 4

Internet Protocol Packet Routing Algorithms

This chapter gives an overview on dynamic IP routing protocols such as border gateway
protocol, routing information protocol, or open shortest-path first protocol. Some
features, advantages as well as shortcomings will be outlined, and then a different
routing concept, which is called agent-based routing, or Q-routing, will be introduced.
We show a combined Q-learning and simulated annealing algorithm which uses
temperature bounds to Internet Protocol (IP) packet routing to remedy two problems of
the original Q-routing: patch recovery and loop detection.

There are three papers on which the results of this chapter are based on: [P4],
[P5] and [P8].

4.1 Introduction

Internet Protocol (IP) Packet Routing, or just simply routing, which is a crucial part of
Internet data transfer processing aims at providing transparent packet delivering service
to applications. The term routing can be defined following Tannenbaum [51] as the task
of delivering data packets from one computer host to another one through one or more
intermediate nodes in finite time steps. If there are no intermediate nodes the data
delivery task is simply called switching or bridging. The host that initiates delivery is
called source node, the host that receives data is called sink or destination node.
Network nodes are identified by unique addresses, in case of IP version 4 network, by
32-bit IP-numbers.

Routing is a compound task and it consists of three basic building blocks:
shortest path determination, routing table maintenance, and IP packet forwarding at
network level. Figure 4.1 shows the place of the routing process in the operating system
(OS) architecture.

IP routing is based on IP packet forwarding, which refers to the process of
placing data packets from one network interface connection (NIC) to another one, is
basically carried out by the communication protocol stack of the OS kernel. In the
figure arrows indicate this process. IP-forwarding is carried out with respect to well-
defined routing rules which are summarized in kernel- level data structures, so-called
routing tables. Routing tables which hold information about the known network
topology can either be manipulated by hand or by user level applications (indicated by
BGP, OSPF or RIP blocks in Figure 4.1). Entries in the table implement simple rules:

 50

they assign an outgoing interface to each possible destination entities. Basically there
are two kinds of entries: network entry and host entry. A network entry is identified by
the IP address-range in network-address/subnet-mask form, a host entry is a unique IP-
number without any subnet-masks. Figure 4.2 shows typical routing table entries in
UNIX operating systems. (A more detailed routing table example of a Cisco router can
be found in Appendix B.) The example routing table joins two networks, 192.111.1.0/24
and 192.111.2.0/24, together. The first two entries tell the kernel to send packets that
have destination address of 192.111.1.x to the Ethernet device named eth0 and send
packets belonging to 192.111.2.x to device eth1, to the other side of the router. There is
also a “default” line that gives default direction to those packets that belong to neither of
the previously specified networks.

Figure 4.1
Routing processes in the operating system

Figure 4.2
Routing table entries in UNIX operating system

If the default line is missing or the packet does not match any of the rules, it is simply
dropped. IP-forwarding is just a mechanical task that does not require any knowledge on
the real network topology; it is just a sequence of simple matching and switching
operations.

Those routing algorithms, for which routing table entries always remain the
same, are referred to as static routing or non-adaptive routing algorithms. Static routing

Destination Netmask Gateway Flag Interface
----------- ------- ------- ---- ---------
192.111.1.0 255.255.255.0 192.111.1.254 G eth0
192.111.2.0 255.255.255.0 192.111.2.254 G eth1
default 192.111.3.1 G eth2

 51

can be applied whenever the network topology remains stationary or changes may occur
only under full administrative control.

On the other hand, there is another class of algorithms named dynamic routing
algorithms, which let the routers exchange link or address information with each other
on the application level. These algorithms are allowed to make modifications in the
routing table with respect to the routing information received, thus allowing adapting to
changes in network topology. Information exchange is performed through specified
routing protocols that describe exactly what information the neighboring routers
exchange. The exchange communication is usually performed over the network layer by
user level background processes. The routing table is a shared resource in the sense that
multiple routing algorithms may operate on the same table at the same time: most of the
routing daemons tag rules they last inserted or modified. Specific network appliances
allow the usage of multiple routing tables in order to create isolated private networks.

Dynamic routing algorithms store routing information in a separate, user- level
database on which they carry out computations. No intermediate rules are permitted to
enter the routing table; only secure rules are registered.

4.2 Principles of dynamic routing algorithms

4.2.1 Classification and metrics

Tannenbaum in [R51] classifies dynamic routing algorithms by using various criteria.

Single-path algorithms determine a single path to the destination node, while
multiple-path algorithms use multiple routes to the same destination, thus letting
multiplexing of IP-packets.

Flat algorithms use a single level of hierarchy, each router knows about each
other. Hierarchical routers define special network areas, or autonomous systems (AS)
that belong to the same administrative domain. Routers, which are responsible for
exchanging packets between autonomous systems, are referred to as backbone routers or
edge routers. Edge routers may build up a backbone topology for backbone information
in separate routing data structures as if the backbone topology was a separate network.
Outgoing packets coming from non-backbone routers are directed to the backbone
router where it leaves the AS. Intra-domain routers are allowed to recognize routers
within the same AS only.

Routing algorithms may use many distance metrics when calculating the best
route, which are as follows: path length, reliability, routing delay, bandwidth, and load
[R40].

• One of the simplest metric is the cost va lue assigned by network administrators
to each link. The sum of costs along a route traversed is used as path length. A

 52

special case is when unit costs are assigned to each traverse through a router:
hop counts indicate how many network devices the packet has passed through.

• Reliability can also appear as a metric. Some network links may be down more
often than others. Similarly, after a failure some links are repaired faster than
others. The reliability of each network device can be measured numerically by
an error ratio.

• Routing delay refers to the total length of time needed to transport a package
from the source to the destination. Delay actually is a compound metric since it
may be influenced by many other factors, such as bandwidth, congestion rate, or
physical distance. It is a common and useful metric in practice.

• Bandwidth refers to the maximal available traffic capacity of a network link.
Larger bandwidth does not necessarily mean larger transport speed. If, for
example links with large capacity are busy it is reasonable to choose a link that
has lower bandwidth, but is less busy.

• Load metric measures how busy the neighbor router is in terms of CPU-load,
memory- load or packet- load.

4.2.2 Design goals

There are several design goals that a routing algorithm must fulfill. During years of
operation the network topology may change, links can go up and down hardware or
software errors may occur, but the whole network must operate robustly, without any
single point of failure12 [R51]. The properties are as follows: simplicity, robustness,
convergence, flexibility and optimality.

Optimality in the definition of Pierre et al. in [R34] refers to the capability of
finding the best route from the source node to the destination with respect to a specified
metric. Optimality may also be defined as reaching the maximal throughput [R40].

Simplicity matters in two ways: firstly the algorithm must utilize as little
software resources as possible to be efficient. Routing decisions are made for every
packets or group of packets13, so there is no place for any software or hardware
overhead. Secondly the larger the algorithm, the greater the probability of having bugs
inside.

Robustness refers to the capability of the algorithm to behave in the expected
way even under unexpected or unforeseen circumstances, such as hardware failures,
large load conditions. Routers have central role in a network, so if they fail, the whole
AS may break down.

12 The term single point of failure is used to refer a single critical point in the system: if the single point
damages, the whole system breaks down.
13 When routing or switching decision is made for a sequence of packets with common source and
destination it is called flow-based switching.

 53

Convergence refers to the agreement among different routers on the best routes.
The speed of convergence is also a crucial issue. If, for example, a link goes down, all
other routers must be informed as soon as possible, to keep their routing tables in
consistent state. Corrupt routing tables may cause loops, or improper delivery.

Routing algorithms should also be flexible that means to quickly adapt changes
in the environment. In case of link failure the algorithm must quickly divert the traffic to
the second best route.

4.2.3 Distance-vector algorithms

Distance-vector algorithms were one of the first algorithms used in the early ARPANET
and Novell IPX systems. They are also called Bellman-Ford or Ford-Fulkerson
algorithms for the honor of its developers Bellman, Ford and Fulkerson.

Distance-vector algorithms are based on the following principle: each router
maintains a table, or more precisely a vector indexed with each possible destination
routers and stores known distance values as well as neighbor identifiers that provide
route to them. Each router knows only which neighbor will take the packet closer to the
destination. The distance from the immediate neighbors is measured directly by special
“hello” packets. After receiving routing table information update from the neighbors, all
entries are checked, and if a neighbor provides better route to the destination, than the
one which is already known, the routing table entry is updated. Operation of the
algorithm is illustrated in Figure 4.3.

Figure 4.3
Network example of distance-vector routing. Numbers on edges indicate distance, in

terms of some metric weights, e.g. packet delays

In the example, routing information is exchanged in neighbordistancendestinatio ,,

triples, which carry the distance information to the destination via a certain neighbor.
For example the full routing table of node A at the beginning can be written as

{ }∞−∞−= ,F,,,,C,,AT EE,1,,DD,1,BB,1,,??,0,)(

 54

where A knows the distance to its direct neighbors, and knows no route to nodes C or F.
It is a trivial assumption that it knows a route to itself. (The router and all immediate
neighbors are highlighted by bold letters.) Similarly tables for nodes B and E are as
follows:

{ }∞−∞= ,F,,D,-,BT EE,1,,,CC,2,,BB,0,,??,1,)(,

{ }FF,1,,EE,0,,DD,1,,CC,1,,BB,1,,??,1,=)(ET .

Suppose that router B sends table update to router A. Router A adds the

measured distance value to B (which is 1) to all distances sent by router B, and
compares the new values to the old ones, if they provide smaller distances. There is no
improvement for entries A and B, but B knows a route to C with distance value of 2. So,
router A registers router B to be the next hop toward router C and the estimated distance
is 3. Note that B still does not know anything about router F, so the corresponding entry
remains untouched. Also note that router A still has not sent its routing table to router B
so B’s entries also remain untouched. Router A’s resulting table is thus:

{ }∞= F,-,,,BC,3,,AT EE,1,,DD,1,BB,1,,??,0,)(.

Suppose that router E also sends its routing table update to router A. Router A

checks the table received in the same way as before and finds that a better route exist to
router C via node E rather than via node B. It also finds a route to node F, thus entries
for nodes C and E in the routing table of node A are updated resulting:

{ }EF,2,,,EC,2,,AT EE,1,,DD,1,BB,1,,??,0,=)(.

Although the distance-vector algorithms function well in theory, they have a

serious practical drawback: they converge to the correct routes, but they do it slowly.
Good news, i.e. a link is up, spread over the network at the speed of 1 hop/exchange, but
bad news, such as some routers or links have been damaged spread over much slowly.
Tannenbaum refers to this problem as counting- to-infinity [R51]. Since all routers must
rely on the information received from its neighbors, and this is the only source of
information from indirect nodes, it is possible when a router goes down, one of its
neighbors may receive information exchange packets from those routers that are not
directly connected to the damaged routers (say, from an indirect router) establishing
routes to the damaged router via its direct neighbor. The neighbor router does not take
into account that the route, which may be proposed by the indirect router, is actually a
route that traverses via itself, and adjusts its routing table to have a longer route to the
damaged router via the indirect router. This yields loops in the delivery as well as
causes improper transmit rules. Several solutions exist to solve counting-to- infinity

 55

problem. The most popular one, though it also fails in some situations, is the split
horizon model. The essence of split horizon is to send infinitive distance from router A
on those outgoing lines which are used for reaching router A thus preventing the farther
router from giving misleading information. The indirect neighbor, in this case, naturally
says infinitive path length to the direct neighbor about the damaged router, so the router
can be recognized as unreachable.

4.2.4 Link-state algorithms

Link-state algorithms are conceptually different from distance-vector algorithms. They
were used in late ARPANET system and are widespread in contemporary commercial
software products as well.

Link-state algorithms also operate by topology information exchange over the
network protocol, but not the whole topology is exchanged, just portions of it. Each
router reports state information about its links, neighbors, and delays. Link information
is then forwarded throughout the network without any modification by intermediate
nodes, and finally all nodes receive information on all other nodes and their links. Then,
the topology on all routers can be built up using the information portions, and shortest
path calculations can be executed to determine the best routes [R51].

The first task a router should do is to discover all of its neighbors. This is done
in a similar way as in the case of distance-vector based algorithms, using special “hello”
packets. Further, each router need to have a unique identifier (which is not necessarily
the IP address, but a protocol dependent number commonly provided by the
manufacturer) that helps to identify all routers on all possible nodes of the network.
Then the line costs are measured using Internet Control Message Protocol (ICMP)
“echo” packets. Measurement can either be load dependent, or independent, which is a
configuration issue. For the sake of precise results, it is common to repeat
measurements and take the average on all measurements.

When a router knows the distances to all neighbors it builds link-state packages
that basically consist of the identifier of the sender, and all neighbors, and also the
distance among each node pair. For example, in the network shown in Figure 4.3, router

A may send a packet like { }E,1,D,1,B,1AL =)(or router F { }E,1,C,1FL =)(,

which are relayed by other routers, so all routers receive them.
Link-state packages can be sent not only periodically but whenever some event occurs,
thus preventing the network from unnecessary communication burden.

The most crucial part of any link-state routing algorithm is how the packets are
distributed. Routers that are closer to the sender may receive link-state packets earlier
than those are being farther from it, which may also lead to loops, inconsistent routing
databases, or unreachable network portions. Basically flooding is used for distribut ing
link-state information with some extensions: a counter that functions as a timestamp on
each packet is maintained by each router. If multiple packets are found which have

 56

identical timestamps, one of them is dropped. If several packets are received from the
same node, the older packet is dropped. There is an auxiliary life field in each packet,
which is decremented in every minute. When the life of a packet reaches a threshold
value, it is simply dropped.

Whenever a link-state packet is received, it is not immediately relayed, but it is
stored for some time in a queue to let some further checks be carried out. When no
packets are received, packets still in the waiting queue are sent over.

When enough link-state information is gathered, each router can build the model
of the whole network topology. In order to determine the source spanning tree of the
network, i.e. a tree graph structure which contains the shortest paths to other nodes,
shortest-path computations are carried out. Such an algorithm is Dijkstra’s algorithm
(see section 4.4). The tables are updated with respect to the results of the shortest path
computations.

4.3 Dynamic routing protocols

Dynamic routing protocols refer to the implementation of routing principles. Routing
protocols should not be mixed up with routed protocols. While the former refers to data
structures and algorithms responsible to computations finding the best way to a
specified destination, the latter refers to protocols routed over the network. Typical
examples to routed protocols are IP, IPX, Novell NetWare or DECnet. The most
popular routing protocols are discussed in the following.

4.3.1 Routing Information Protocol

Routing Information Protocol (RIP) was the first routing protocol used in networking.
The protocol specification was proposed by Hedrick. RIP is basically a distance-vector
algorithm that uses hop count as a metric. In order to avoid routing loops RIP sets a
limit on hop counts, which is a defined number, 15, so any routing entry that informs
about destination farther than 15 hops are considered invalid or unreachable. 15 is also
the maximum network diameter14 that can be scanned by a RIP router. The real
advantage of the limitation is that the protocol is very robust.

Routing updates are scheduled at regular intervals with a small amount of added
perturbation in order to avoid network congestion. Only the best routes are considered
to be valid, all “second best” entries are dropped. Each entry has also got an own timer
which makes old entries to be invalid, when a certain time threshold is exceeded.

14 The term diameter is used to refer to the maximum distance that can be achieved on the network in the
networking literature. Since it is measured from the current host, the term radius would be more
expressive.

 57

RIP uses IP addresses for identification. RIP2, which is an update version of the
protocol, allows storing not only host entries, but network entries in the routing table as
well. There is also a special tag that enables to distinguish rules learned by RIP and
rules learned by other protocols. The full specification of RIP can be found in [R14].

4.3.2 Interior Gateway Routing Protocol

Interior Gateway Routing Protocol (IGRP) is also based on distance-vector routing
updates, such as RIP but differs from it in many ways. IGRP stores data in separate
structures such as: neighbor table, topology table, feasible successors table and routing
table.

Each neighbor has an entry in the neighbor table containing identification and
distance information. For distance metric in IGRP a 5-dimensional vector is used.

Topology table contains all possible destinations advertised by neighboring
routers. It is also an important difference from RIP that for each destination node a list
of neighbors is stored which advertise routes to that destination, thus less appealing
routes are also stored. Those advertised routes that have smaller cost values than the one
currently used to transport packets are considered to form the set of feasible successors
for that target. Whenever a route becomes unusable the set of feasible successors is
sought for a new route. If the set is empty, the route to the destination turns into active
state, which means that route recalculation is carried out by a special DUAL finite state
machine. DUAL guarantees to compute loop-free routes and forms a new set of
successor states, as well as updates the routing table.

Though update-packets are sent regularly, routers may initiate an update request
to their neighbors. This is typically done when a route becomes active.
Like advanced RIP protocols, IGRP also use tagging to distinguish rules that have been
added by the IGRP protocol (internal routes) and rules that have been inserted by
another algorithm. More details on IGRP can be found in [R38].

4.3.3 Open Shortest Path First

Open Shortest Path First (OSPF) is a link-state algorithm based routing protocol. As its
name prompts, OSPF is an open standard, thus all specifications are available in [R29].
OSPF is designed to work in different levels of hierarchy. Different areas can be defined
within an autonomous system that can be connected by an area backbone which is also
an OSPF area. Routing information concerning to different levels of the hierarchy are
separated from one another in different data structures. The backbone network topology
is invisible at lower levels of the hierarchy.

All neighboring routers that have synchronized link-state databases are adjacent
routers. Each router periodically sends link-state advertisement on adjacency

 58

relationships to inform other routers on certain part of the topology. As it is usual in
link-state algorithms, from all received and feasible advertisement a topology database
is built up on each router which is used by a shortest-path algorithm to compute the
spanning tree with itself as a root node and determine the best next-hop to each possible
destination.

4.3.4 Border Gateway Protocol

Border Gateway Protocol (BGP) is an exterior protocol that is used for rout ing between
autonomous systems. There is a slight implementation difference between interior
protocols (such as all previous ones) and exterior protocols. The latter should be capable
to advertise lots of network entries, and should be capable to synchronize and keep
routing database in consistent state even if the autonomous system has more than one
exterior gateway.

BGP runs over a reliable transportation protocol, typically over TCP, which
eliminates the need to implement explicit update fragmentation, retransmission,
fragmentation and sequencing. BGP may be implemented on computers that do not
route at all; any host using BGP is permitted to relay BGP information.

Each BGP router holds an active connection with its peers on which it
periodically sends keep-alive messages. If the connection is closed for some reason, all
the routes toward the closed connection are also invalidated. No deletion takes place,
since it is needed to send information on invalid routes over the network, to let other
routers know, which particular links are down. At the beginning of the BGP connection
full routing information is exchanged; later only change updates are reported. BGP can
aggregate rules in order to allow compact routing tables.

BGP can work in hierarchy as well. The fundamental BGP specification is
written in [R39].

4.4 Shortest-path computation

Shortest-path computations are executed in any of the link-state algorithms whenever
enough information is gathered about the network topology. Following the notation of
Ahuja at al. in [R1], network topologies are represented by directed graphs having the
following assumptions:

• All metrics are represented by positive integers.
• The graph is connected; that is every node has a directed path to every other

node.
• No negative cycles are present15.

15 This assumption comes from the nature of the application, as well as the definition of the metric.

 59

• Bidirectional links are treated as double edges in the opposite direction.

Algorithms that determine shortest-path among network nodes are referred to as
shortest-path algorithms and can be classified into label setting and label correcting
methods. Both use labeling technique to indicate the minimum distance from the source
node, as well as the predecessor node, through which the shortest distance is achieved;
both algorithms are proved to be convergent to the optimal solution. Distance labels are
upper bounds on minimum distances, and are updated in interactive steps. Label-setting
algorithms divide the set of nodes into two subsets: temporarily labeled nodes and
permanently labeled nodes. As the computation advances, the number of permanently
labeled nodes grows until all nodes are labeled as permanent. At this stage the algorithm
terminates. Label-correcting algorithms sign all nodes as temporary, and it is possible to
modify all the labels at any stage. Label-setting algorithms are simpler than label-
correcting algorithms and have smaller computation cost. However, label-correcting
algorithms can be applied to a broad range of problems, such as negative cycle-
detection, and offer much more flexibility [R1].

4.4.1 Dijkstra’s algorithm

One of the simplest and most popular methods of label-setting algorithms is Dijkstra’s
algorithm which is used for finding the shortest path between a particular source node,
and all other nodes, thus forming a spanning tree which has the root in the source. The
algorithm initializes labels on the source node to zero distance and void predecessor and
any other nodes to infinitive distance and unknown predecessor. A neighbor node is
then selected with the lowest label value as an initial step. Labels are denoted by

rom_sourcedistance_fnoderpredecesso ,_ tuples. The selected node is examined by

an optimality criterion, whether ijij cdd +> is true, where id is the distance from the

source to node i (the source-source distance is labeled as 0), jd is the distance from the

source to node j, and cij denotes the distance between nodes i and j. If the label on node j
is larger than the new path which is found via node i, the distance on j is updated to

ijij cdd += and the predecessor of node j is marked to i. If the condition is false, then

no action is performed. Figure 4.4 gives a formal algorithmic description where ipred

denotes the predecessor node of i in the shortest path. An illustrative example is shown
in Figure 4.5.

Property 4.1: The computational cost of Dijkstra’s algorithm is proportional to)(2nO

 60

(a)

(c)

(b)

(d)

(e)

Figure 4.5

Example to how Diskstra’s algorithm works. Nodes belong to set S are denoted by grey.
The two final steps are abbreviated in a single pane, pane (e)

 61

Figure 4.4
Formal description of Dijkstra’s algorithm

4.4.2 Floyd-Warshall algorithm

Floyd-Warshall Algorithm (FWA) belongs to the class of label-correcting algorithms. It
solves the all-pairs shortest-path problem, i.e. it determines shortest path from every
node to every other node. As general label-correcting algorithms FWA scans through
the set of edges to find nodes for which the optimality equation discussed at Dijkstra’s
algorithm is hurt. The basic idea of the algorithm is the assumption that all the distance
labels between two arbitrary nodes are either updated in every time step or left
untouched depending on the existence of any intermediate node, that makes a shortcut.

Let k
ijd denote the distance between nodes i and j provided that k-1 intermittent nodes

are involved in the path. FWA initializes 1
ijd with distances cij, if link exist between i

and j, or 8 if it does not.

The value of 1+k
ijd is computed using the following recursive rule

{ }k
kj

k
ik

k
ij

k
ij dddd +=+ ,min1 (4.1)

where k goes from 0 to n+1. The rule is valid since the shortest path that uses nodes 1,

2, …, k as internal nodes either miss to go through node k (k
ij

k
ij dd =+1), or does pass

through node k (k
kj

k
ik

k
ij ddd +=+1) [R1].

Figure 4.6 shows Floyd-Warshall algorithm. In the case of all-pairs shortest-path
problem precedence relations among nodes in any path is stored in the ijpred matrix.

input: N set of nodes, E set of edges, s source node
input: A(i) the nodes available from node i, c[i,j] distances
output: labels on all nodes, pred[i] vector
initialize set S:=ø; S’:=N; d(s):=0; d(i)=8; for all other nodes;
initialize pred(s):=null;
function Dijkstra(N,E,c)
begin
 while |S|<n do do
 let node i∈S’ be the node with the smallest label value
 S:=S+{i}; S’=S’-{i};
 for each (i,j) ∈A(i) do
 if d(j)>d(i)+c(i,j) then d(j)=d(i)+c(i,j);
 pred(j):=i;
 end
 end
 end
end

 62

From this matrix the shortest-path between all sources and destinations can be
determined by pointing on the destination node, and traverse in backward order. It is
shown in [R1] that:

Property 4.2: The FWA computes the shortest distance between all nodes at the cost of

)(3nO .

Figure 4.6
Floyd-Warshall shortest-path algorithm

4.5 Reinforcement learning based routing

Although current dynamic routing algorithms are wide-spread, and robust enough, they
have some shortcomings to deal with as it is pointed out by Littmann and Boyan in [R6].

Both distance-vector and link-state algorithms implement a naive approach: the
routers exchange reliable information over the network layer with one an other, thus, all
information must be confident and consistent. Especially link-state algorithms are
sensitive to inconsistencies, since all routers maintain the model of the whole topology,
and if, for some reason, different routers process the same link-state information
different ly, it may lead to unavailable network portions or loops. The problem would
disappear if there was a global observer which could keep the topology maps in
consistent state and tell the packet the optimal path all the time. However, in networking
technology there is no global observer, and decisions should be made on the basis of
local information. Global information (or parts of global information) is produced by
periodical or if-needed information exchange at the price of a definite communication
cost. Consider a distance-vector algorithm: for small networks the routing tables are

input: N set of nodes, E set of edges
input: c(i,j) the known one-step distances between nodes
output: labels on all nodes, pred(i,j) matrix
initialize for all i and j d(i,j):=8; pred(i,j):=null;
initialize for all nodes i d(i,i):=0;
initialize for all edges d[i,j]:=c(i,j);
function Floyd_Warshall(N,E,c)
begin
 for k:=1 to n do
 for each edge (i,j)∈E do
 if d(i,j)>d(i,k)+d(k,j) then
 d(i,j):=d(i,k)+d(k,j);
 pred(i,j):=d(i,k)+d(k,j);
 end
 end
 end
end

 63

relatively small, so periodical exchange is feasible at sufficiently low communication
cost, but in the case of large networks exchanging full routing tables may consume
considerable amount of time.

Global information can be obtained in smaller chunks as well, forming the
concept of a new routing model called preference-based or agent-based routing. The
basic idea of preference-based routing is similar to distance-vector algorithms: all
routers use the estimation of their neighbors on how far the destination is plus the direct
distance to the router. The difference is, that instead of transportation-layer information
exchange, the estimated delivery times are determined by trial and error probes, thus
each router has a realistic, on-line estimate on the delivery times, which also gives the
possibility of adapting to topology changes. Each node maintains a preference table,
which is called Q-table, assigning estimated delivery times to each destination-next hop
pair. The estimates are updated each time the router sends a packet to one of its
neighbors. As the node routes packets, preference values gradually reflect more and
more accurate model of the global network topology.

Preference-based routing is formed on the basis of reinforcement learning. Each
router is treated as an intelligent agent that makes routing decisions on the basis of
estimated delivery times and gathers reinforcement signal proportional to the quality of
routing16 from neighbors or from possible destinations each time a packet is sent.

To formulate the routing problem as a reinforcement learning problem, first the
states, actions, and reinforcement functions are to be defined. In the case of routing
states are identified simply as destination nodes [R6]. Note that the real state identifier

is a triplet: identifierpacketndestinatiosource _,, .

Property 4.3: The state of a router agent can be uniquely identified by the source, the
destination nodes and the packet identifier.

In each delivery step the router may decide which neighbor to send the packet to. It is
reasonable to define selected next-hop neighbors as actions. When the packet arrives at
the neighbor, it immediately sends two pieces of information back to the sender: the
neighbor’s estimation on the delivery of the packet to the destination and implicitly a
reward signal. When the packet is sent, a timer is started, which stops when the
acknowledgement is received from the neighbor. Various functions of the time
difference are then used as a reinforcement feedback. The estimates are updated by the
following rule:

++−=+)',(min)()1(),('

'
1 adQtfQadQ s

k
a

s
k

s
k γαα .

(4.2)

16 The quality of routing may refer to constraints on different additive or non-additive metrics as well as
to the confidentiality of data delivery.

 64

Here),(adQ s
k denotes the actual node’s estimate on the delivery time to destination d

in time step k, when selecting neighbor a. Learning-rate is denoted by α , discount rate

is by γ , and the delivery time estimation of neighbor a by)',(' adQ s
k where 'a the next

hop after the next hop. Note that instead of maximization, minimization is used due to
the interpretation of the Q-values: estimated delivery times; the shorter they are, the
better the delivery is.

Although both denote the same thing and for the environment dynamics,
a

s
a

ss PP =' , there is a semantic difference between a and 's : while the former means

“send this packet out on a certain interface”, the latter means “the packet has arrived at
the neighbor, and it has sent an acknowledgement”. From the routing point of view
there is no reason to distinguish between the two terms, since local network interface
problems are as wrong as remote machine breakdown with respect to the packet flow.
Note that the preference values are distributed among all routers. Also note that if all
tables from all nodes would be put together the resulting table, which would specify

states as ndestinatiosource, tuples, will be a large preference table of the whole

network, and slightly modified update rule of equation 4.2 could be used to operate on
it. Following the work of Watkins and Dayan [R59] it is easy to see that such Q-values
converge to the optimal estimated data delivery times under certain conditions. In the
routing case, this large Q-table is stored in smaller chunks on the different nodes, and
joining them is carried out by network communication. Since, the distributed nature has
no effect to the convergence, the following property is true :

Property 4.4: The distributed Q-learning algorithm that uses equation 4.2 as update
rule retains convergence to the optimal Q-values.

Q-routing algorithms can be boosted up by dual Q-routing, when not only the
next-hop node sends estimation about the delivery time to the destination node, but the
source itself sends an update to the next-hop to adjust delivery times from the source, as
it is a potential destination to other packets. The next-hop node forwards this
information along the path. The method is also called backward exploration and details
can be found in [R21].

There are many appealing properties of distributed preference-based routing, but
several questions are still open: Which neighbor to choose at the initial steps? How
cycles are detected and avoided? How good news and bad news traverse along the
network? The basic model does not deal with these questions, so an extended version is
proposed in the next section.

 65

4.6 Proposed extensions

In this section we give some proposal to the original Q-routing algorithm worked out by
Littmann and Boyan, and we give the framework how Q-routing algorithm can be
integrated with Boltzmann-annealing to remedy most of its original shortcomings. The
new routing algorithm is referred to as extended Q-routing.

If a node is considered as an intelligent agent and it enters the system, it has no
knowledge about the network topology. In this scenario, the expected behavior of the
agent is to make some explorative steps around the neighbors. This can be
accomplished by selective flooding, where “selective” refers to be selective in time.
When the agent has gathered information enough, or has no more time to explore, it is
expected to start using one of its discovered routes to transport packets to the desired
destination. The proposed method how the agent focuses on the best route is using
Boltzmann exploration, which either gives equal chance to all neighbors or it is
discriminative i.e. use only the best neighbors to a given destination depending on a
single control parameter named temperature. For each destination an individual
temperature value is assigned that controls the “sureness” of the data delivery toward a
particular node. Separate temperatures allow distinguishing between destinations, so
there may be destinations to which firm routes are used, and destinations toward the
delivery is under exploration.

Router table initialization can be boosted up by initial communication with the
neighbors. Whenever a router is new to the network, it first sends “hello” messages to
the other routers which in turn send the list of possible destination nodes back. The new
router is then registers its neighbors, initializes its tables to zero and sets temperature
vector to some initial, non-zero value. The router agent then makes exploration during a
given time period using dynamically adjusted temperature bounds following a
predefined simulated annealing schedule. When the exploration is over, the temperature
values corresponding to each destination go below the minimal value, and the router is
ready to use the best route toward that destination. When this point has been reached,
the routing procedure is identical to the ordinary Q-routing algorithm.

Whenever a router or a link breaks down, all neighbors begin to use the second
best route bypassing the damaged part of the network. Alternative paths may be simple
bypasses, but can be totally different routes depending on the network structure, or the
speed of the links. However, there is no guarantee to appropriate path recovery, i.e.
when the router or link comes up again after failure the traffic should be adjusted back
to the original, and presumably, better route. The reason why this may occur is that the
Q-values are updated only along a used (or partially used) path, but if the recovered
path is just bypassed by another route, no packets are transmitted along it, thus no Q-
value update happens. This problem is pointed out by Boyan and Littmann [R6] as well
as by Choi et al. [R9], and is also referred to as the “path-hysteresis” problem. The
solution in the Boltzmann-annealing model is straightforward: Temperature values of
certain routers are to be re-adjusted to the ir theoretical maximal value, and a re-

 66

annealing process should follow, but only for a single temperature value. This process
can be initiated by a special “raise temperature” packet sourced by the neighbors of the
damaged router (or the previously damaged, now recovered router itself), or endpoints
of a damaged link, when they detect that the failure is over. The “temperature up” signal
is flooded throughout the network, as long as its time-to-live (TTL) value is exceeded,
or a router finds that the sender is neither a neighbor nor a destination entry. The
temperature raising signal for a given destination is always dropped when any annealing
procedure is being done for that destination.

Temperature can be raised up as a consequence of the routing agent’s own
decision as well. When the agent experiences, that for a particular destination the data
delivery has significantly increased, it may raise its own temperature up, and may carry
out an exploration cycle. This requires the storage of not only the expected values of
delivery times, but their standard deviation from the mean value as well.

Cycle detection along the path, especially in the exploration phase, is also a key
issue. Ordinary Q-routing does not involve any explicit cycle detection. As it is shown
in [R6], the cycles are punished in the regular way, and for small networks the learning
system will surely find a cycle-free path superior to any other paths involving a cycle.
However, in large networks cycle-free path learning cannot be guaranteed. An efficient
cycle detection algorithm is, thus, needed: each router can detect a cycle if the package,
that has already traversed it, has some clues there. It is satisfactory if the header of each
packet is stored in the memory as long as an acknowledgement packet arrives or the
memory is short of free space.

Acknowledgements are also important parts of the successful data delivery and
the learning process. There are basically two kinds of acknowledgements which actually
aid cycle detection: immediate reward from the neighbor and remote feedback from the
destination (via the same neighbor). The first kind of acknowledgement s used in the
original Q-routing model is applied to give an immediate estimate on the expected
delivery time. On the other hand remote reward gives a real estimate on the total packet
delivery time. If both types of rewards coexist in the system, equation 4.2 varies as:

++++−=+)',(min)()(")(')21(),('

'
1 adQlgtftfQadQ s

k
a

s
k

s
k γαα .

(4.3)

The immediate rewards are denoted by)(' tf , the indirect reward is denoted by)(" tf

which are both the functions of measured times, i.e. the time between sending the
packet from the source and receiving it at the destination, as well as the time sending the
packet from the source and receiving it by the immediate neighbor. Function g(l) is the
punishment function when a packet is in a loop. In the simplest case it is inversely
proportional to the length of the loop.

Action-state values can be normal distribution probability variables as well, as
Gullapalli shows in [R12]. In this case each action-state value is represented by a mean,

 67

and a standard deviation. Equation of the mean value is symmetrical to equation 4.3,
while that of the standard deviation for all Q-table entries can be written as follows:

[])(")(')1(),(1 ththad s
k

s
k ++−=+ βσβσ . (4.4)

4.7 Implementation, experimental results

4.7.1 General principles

Based on the extension proposal principles in section 4.6, we developed a distributed
extended Q-routing network topology simulator in Java. The simulator imitates IP- layer
transportation through UDP packets. The reason for this design principle is that in
extreme case the whole simulator may run on a single computer. Each router is
implemented as an individual UNIX process that has multiple Java threads. Each router
connects to its neighbors via UDP socket connection. Since the topology is simulated,
there is a dispatcher agent which maintains the network topology, and tells each router
the appropriate neighbor-mapping. This agent has no function in a real environment,
since delivery times as well as topology are real; there is no reason to simulate them.
Figure 4.7 shows the sketch of the routing simulator. The dispatcher agent forms a
central access point to the simulated topology, and enables to gather statistics and
provides some visualization tools as well.

Figure 4.7
The scheme of reinforcement learning routing simulator

Delivered packets are simulated by objects. There are five basic packet types:

hello, data, acknowledgement, raise temperature, and “send me Q”.
Hello packets are similar to those used in the classical dynamic routing

protocols, with the only difference that they are forwarded throughout the network.

 68

When an agent receives a hello packet, it registers the sender into its Q-table and
initializes the corresponding preference values to 0. If it finds that an entry for that host
already exists, the packet is simply ignored.

Data packets are also referred to as routed packets. Whenever a data packet
arrives at the agent and the agent is not the destination, a decision is made where to
forward the packet with respect to the following algorithm: The node where the packet
has come from is excluded from the selection possibilities; then a probability
distribution is calculated with respect to the preferences and the actual temperature
value; a random action is generated out of the probability distribution. Note that when
the temperature is sufficiently small, the only action that can be selected with almost
probability of 1 is the best Q-valued action. Also note that the preferences are in reverse
order, i.e. the smallest the Q-value is, the better the action.

Relevant header information of all packets is stored in an associative array for
future processing. If the packet entry already exists in the array, the packet probably has
already been passed through the agent, thus a loop emerges in the delivery path. The
loop detection method is detailed in subsection 4.7.3.

As it was stated before, remote acknowledgement packets are sent whenever a
data packet arrives at its destination node. An acknowledgement packet traverses back
to the source on the same path as the data packet arrived. It holds two pieces of
information: the Q-value of the next hop17 is inserted into the packet as in the case of
ordinary Q-routing; the reward is computed from the difference between the time stamp
of the data packet header stored and the time stamp of the acknowledgement. If an
acknowledgement is received without corresponding stored data header, the
acknowledgement is dropped, and warning message is send to the dispatcher agent.
There is also an immediate acknowledgement and feedback which arrives whenever the
packet reaches the next hop router. When all reward- like information is gathered, Q-
values are backed up, and the acknowledgement is forwarded backwards to the source.
If the source node is reached the acknowledgement is dropped after backup.

Raise temperature packets are used to explicitly control the temperature value
corresponding to a given destina tion. Whenever an agent receives this kind of packet, it
calculates temperature bounds and sets the actual temperature to its maximal value
corresponding to the destination from which the packet has come.

Before a stored data packet header is dropped due to timer expiration, the agent
sends “send me Q” packet to the neighbor which the data packet is forwarded to. The
neighbor then replies with a “send me Q acknowledgement” holding its estimated
packet delivery time to the destination of the dropping packet. This results in immediate
reinforcement.

The exact specification of the used packet formats for Internet Protocol version
4 (IPv4) can be found in Appendix C.

17 Next hop from the point of view of the data packet.

 69

4.7.2 Time to live fields

There are two kinds of time to live (TTL) fields: packet-wise, and queue-wise, which
are independent from each other. Packet-wise TTL field is a counter which counts
through how many routers the packet has already traversed so far. If the value exceeds
some threshold, the packet is dropped in order to avoid network congestion. Queue-wise
TTL field corresponds to packet header storage on routers. Each queued header has got
a TTL field which is proportional to the amount of time the header has spent on staying
in the queue. Since there is no reason to store header information forever, having
exceeded some time value, the header is dropped. In case of an acknowledgement that
regards to an entry that has already been dropped arrival no learning takes place. Queue-
wise TTL is also proportional to the amount of memory available to store header
information. In the physical implementation, a special cleanup process is used to scan
for free memory, and if the queued header information grows beyond a threshold value,
old entries, i.e. entries that have old queue-wise TTL values are expunged from the
queue. Under normal load conditions queue-wise TTL values decrease slower than
packet-wise TTL values, so each acknowledgement will probably find a corresponding
entry in the stored header values. Under heavy load conditions queue-wise TTL values
may decrease quicker, and acknowledgement will not find valid entries in the header
queue.

4.7.3 Loop detection

Although any preference routing algorithm could survive without loop-detection, the
efficiency can be seriously improved by using it. Since negative path length are
excluded from the system, there is no reason to enter any packet into a delivery loop,
since if there exists two paths between two arbitrary nodes, one with and the other
without a loop, the loop-free path will always be shorter in terms of any non-negative
metric, than the looped one and it receives better reinforcement. In the extended Q-
learning model, whenever a loop is detected in the delivery path, it is wholly unfolded,
and only the loop-section is punished in order to let other useful pieces of the path to be
selected it in the future.

Two-hop loops have already been excluded, since the previous hop is always
removed from the possible next-hop selection palette. Larger loops are, however, more
difficult to detect. The basic principle is to use a special data field, called “looped bit” to
indicate whether the packet is outside, or inside a loop. The looped bit is set by an agent
that first detects, that the packet has already been there without acknowledgement.
Suppose a simple loop topology, such as in Figure 4.8. Suppose further, that a packet
traverses nodes in the following sequence: EABCDA. In this case node A is the first
node that sets the looped bit, since it is the first node which receives the packet twice.
Every other node can detect that if the looped bit of the received packet has set or not. If

 70

it is set and the original sender of the packet, i.e. the one maintained in the header
queue, and the currently chosen next hop is the same, then the packet is backtracking in
a loop, and is forwarded back to the original sender with looped bit set, along with a
large artificial delivery time value which serves as punishment. If the chosen next hop is
different, than the packet exits the loop, and the looped bit is cleaned. When the
direction of the packet is reversed at the first time, node A also indicates the fact of the
loop by setting the looped bit in the packet header, and when the backtracking
procedure reaches node A again, it cleans the looped bit and forces the packet to be sent
to any directions other than node B (i.e. the packet cannot be forwarded to any of its
senders, neither to node E which originally sent the packet, nor to node B who sent the
backtracked packet with looped bit cleaned). Whenever a packet is received with looped
bit set, the punishment update is applied to the original next hop, since the actual agent
knows that the next hop contributed to the loop. During the backtracking process the
header information is removed from the header queue to keep the system clean.

Figure 4.8
Simple loop in a delivery path

4.7.4 Experimental results

The routing algorithm was tested on different network topologies, with node number up
to 100. The topology information was loaded artificially through the dispatcher agent.
Results were monitored via the logs of the dispatcher. All networks were trained to the
all-pairs shortest path problem, i.e. all nodes were sender and receiver at the same time,
and the shortest path is sought among all nodes. Test parameters of the algorithm are
summarized in Table 4.1.

Studying the output of the test runs the random behavior can be stated by packet
losses, dropped header queue information and selection of non-optimal paths. This is
the exploration stage when the agents discover the topology. At later stage, when the
agents have reasonable estimate about the network topology, there are less packet
losses, but non-optimal routes are also selected. As the temperature value decreases, the
agents more and more often select the optimal path, and when the minimal temperature
value is reached, only the best path is chosen. A test topology (the backbone of the
Hungarian Academic Network) is shown in Figure 4.9.

 71

Parameter Value
Learning rate 0.1
Discount rate 0.9
Annealing schedule linear annealing with variable

temperature bounds
Exploration interval proportional to nodes × links

Table 4.1

Most important parameter settings of Q-routing algorithm with Boltzmann exploration

The shortest path results were validated by using Dijkstra’s algorithm. In most
of the cases the modified Q-routing algorithm found the theoretical optimum even under
large load conditions.

Figure 4.10 illustrates the delivery time between two towns (which are indicated
by asterisks in Figure 4.9) as the function of time steps. It is easy to see, that at the
beginning and throughout the exploration cycle, the path lengths are of variable size, the
fluctuation is large. As the exploration cycle is over, only the best path is used. Since
there may be stochastic delays in the delivery chain, the delivery time is allowed to
show small variance in the exploitation stage as well.

Link and router breakdown tests were performed manually. The algorithm was
capable to detect changes and diverted the traffic onto an alterna tive path (see the curves
in the middle of Figures 4.11b and 4.12b). At the beginning, the usual exploration
shows that the length of delivery heavily fluctuates. Then a stable, bypass route is
chosen. When the link comes up again, all nodes perform similar annealing cycles for
the damaged router, or routers on both side of a damaged link as in Figure 4.10, and
finds the best path to be the original one, thus fulfilling a complete path recovery.
Figure 4.12 illustrates the same behavior, but for two pairs of nodes.

The scheme of the router agent algorithm can be seen in Figure 4.13.

4.8 Implementation proposal

4.8.1 IP-layer implementation

Though the simulator is implemented using UDP, all the applied packet format
extensions can be implemented at network layer level. The specification of IP-header
allows inserting extra options into an ordinary IP-header up to 60 bytes, and since all
options required by Boltzmann exploration based Q-routing are within this limitation, it
is reasonable to specify IP-packet format extensions as IP options.

 72

Figure 4.9
The backbone topology of the Hungarian Academic Network. Nodes of the graph
indicate Hungarian regional centers; edges denote “delay distances” among them

Figure 4.10
Delivery times between two towns indicated by red line in Figure 4.9 vs. received

acknowledgement time steps diagram

 73

(a)

(b)

Figure 4.11
Re-annealing schedules between a source-destination pair

(a)

(b)

Figure 4.12
Re-annealing schedules between two source-destination pairs

 74

Figure 4.13
The schematic algorithm of Boltzmann exploration based extended Q-routing

function routing_agent()
begin
 initialize internal data structures;
 thread cleanup
 if free memory falls below a threshold value then
 clean up headers with old TTL value;
 end
 end
 thread timer
 start/stop timers on event;
 end
 thread annealing
 if Tmax, Tmin and Tactual are set then
 start annealing using any of the annealing functions;
 end
 end
 thread routing_loop
 if packet arrives then
 if destination reached then
 send acknowledgement back to the source;
 process packet;
 else
 case packet type in
 data: select outgoing interface using Boltzmann-eq.;
 switch the packet;
 send immediate Q-estimate to the previous
 node;
 acknowledgement: calculate parameters;
 use backup rules to update Q-
 values;
 forward the acknowledgement;
 if source node is reached then
 sink acknowledgement;
 end
 looped: unfold loop;
 hello: register the router;
 forward hello packet;
 raisetemp: raise the temperature corresponding to
 the node that originated the packet;
 forward raisetemp if needed;
 smq: ask the neighbor for Q-values corresponding
 to a specified packet header;
 sqm-ack: update Q-values with values received;
 end
 end
 end
 end
end

 75

Any IP option can be specified by the following scenario:
• Each option has a unique code which indicates the control of that option. There

are specific codes reserved for specific purposes, but there are free slots for
individual use. The option code is the first field.

• Each option code is followed by a length field which indicates the total length of
that option as it comes from Portel’s IP specification [R35].

• The last field is the value of the option which can be of different length
depending on the previous field.

Appendix C also details the IP version 4 packet formats for the extended model. All the
extensions are designed to be compatible with all the standard IP specifications [R35].

The vast majority of protocol proposals are put into the data packet due to the
loop detection algorithm. Each packet type, such as data, hello, acknowledgement, raise
temperature, send me Q, and send me Q acknowledgement has a common field called
control code which involves all control information related to Boltzmann exploration
based Q-learning. In most of the packet types there is no need for any extra option other
than the control code.

Reverse path packets such as any type of acknowledgement packet or raise
temperature packets are based on Internet Control Message Protocol (ICMP) specified
in [R36]. ICMP packets consist of header information only without any data part, and
are used to transfer control information between any pairs of nodes. Note that in the
case of large amount of data, the packets are fragmented, there is only a single reverse
path packet corresponding to the first packet in a fragmented data set needed, which
largely reduces communication overhead. IP layer acknowledgement may be combined
with transportation layer acknowledgement in case of reliable transportation protocol
such as TCP, thus, further reducing the number of extra packets.

Q-values in all types of acknowledgement packets are stored as 4-byte floating
point numbers.

4.8.2 UDP implementation

The proposed model can also be implemented by using higher level protocols, in the
same way as ordinary dynamic routing protocols are implemented. In this case there are
two separate routing tables, the ordinary routing table, and a table which is used for
routing the exploration packets. In the ordinary table, stable rules, which have been the
result of an exploration cycle, are inserted only. The other table may contain temporary
rules, and all routing protocol packets are transferred via this table. IP-route version 2
and Linux Netfilter modules are capable to maintain different routing tables as well as
pre-routing chains to let different packets be routed by the different tables [R62]. All the
proposed option- level IP-header extensions (see Appendix C) can be used to build up
the Boltzmann exploration based routing protocol.

 76

4.9 Discussion

In the chapter we studied the most important functionalities of packet routing. Different
dynamic routing protocols, such as RIP, OSPF or IGRP have been surveyed. All these
protocols use transportation level reliable information exchange to share routing table
data with one another.

There is a new concept, named Q-routing, which uses network layer information
exchange through trial and error probes and learns routing information from experience.
This concept is proved to give better flexibility and robustness, than general shortest
path algorithms, but suffers from path recovery and loop detection problems.

We proposed an extended Q-routing model based on Boltzmann-exploration to
overcome both problems. Simulated test results have shown that the reward-punishment
procedure can be successfully applied to detect and to punish looping parts of any path
while retaining the non- looping parts be competitive. Environment changes are detected
either by protocol included warning packets, or by the routing agent’s self recognition.

 77

Chapter 5

Flow-shop Scheduling in Virtual Manufacturing
Environment

In the first part of the chapter a brief survey on manufacturing disciplines will be given,
with special emphasis on the virtual manufacturing concept. Then job scheduling issues
are examined where special attention is paid to the flow-shop scheduling problem.

In the second half of the chapter we show the design and the implementation of
combined reinforcement learning and Boltzmann-annealing based scheduling algorithm
which uses the framework of the virtual manufacturing concept and provides dynamic
scheduling capabilities as well. The algorithm aims at solving the simple m-machine, n-
job flow-shop scheduling task on- line. The results shown in this chapter are based on
our papers [P1] and [P2].

5.1 Introduction

The term manufacturing refers to the process of making ready products from different
input resources, such as processing equipment, material, energy and information in
finite time steps. In a broader sense the term manufacturing is defined as “all the
activities and processes from order receiving to delivering customer goods” [R17].
Manufacturing processes are accomplished by manufacturing systems (MS) which,
following the definition of Tóth in [R52], are the structured set of humans, machinery
and equipment bounded to a material and information flow. MS is “a complex
technological object composed of machining, material handling, tooling and controlling
sub-systems”.

Intelligent manufacturing systems (IMS) introduced by Hatvany and Nemes in
[R13] aim at integrating the fields of artificial intelligence (AI) and manufacturing
systems in the sense that the resulting intelligent manufacturing systems are expected to
solve tasks, or sub-tasks in unexpected or unforeseen environmental conditions with
certain limitations. These conditions may mean changing market demands, late
deliveries of suppliers, failed operations, machine break-downs, etc. The key benefit of
IMS is that the internal structure of the manufacturing process is capable to exploit and
feed back experience on a particular manufacturing process in order to let the system
improve the execution of the same task in the future.

 78

A step toward contemporary manufacturing research is the recognition that
computer systems and information technology (IT) can provide firm infrastructure as
well as excellent computational capabilities to create simulation on manufacturing
process models, which make the system more predictive. The integration of IMS and IT
brought the disciplinary field of virtual enterprises (VE) and virtual manufacturing
systems (VMS). Tóth in [R52] gives a more comprehensive view of the terms as well as
the history of manufacturing from direct numerical control (DNC) systems to up-to-date
computer integrated manufacturing (CIM) approaches.

5.2 The concept of virtual manufacturing, distributed models

In a nutshell, all virtual manufacturing concepts are about to create computer-based
models of real manufacturing systems, accomplish performance improvement
calculations on these models utilizing the fact that a simulation step can be carried out
in the fraction of time of a real manufacturing operation, and feed the results of the
computation back to the real manufacturing system. Figure 5.1 gives an example on the
VM concept on the flexible manufacturing cell’s (FMC) level. The manufacturing
system can be divided into four parts: real production system (RPS), real information
system (RIS), virtual production system (VPS), and virtual information system (VIS)
[R17]. The real part (RIS and RPS), on one hand, represents the real system which
consists of all the machines, workstations, shop-floor network, control system and
monitoring tools that make up the manufacturing environment in the cell. On the other
hand, the virtual parts represent the computational model of the above mentioned
system elements which take the form of objects18 on a large-performance computer, or
the network of computers. Note that the mapping between the real part and the virtual
part is bijective, however, the virtual part may be structured in a totally different way
than the real system. As Monostori and Kádár points out the virtual system may work
using distributed manufacturing concepts, such as heterarchical control, while the real
system uses hierarchical control structure [P7][R5][R17][R27].

Holonic manufacturing (HM), or as it is most frequently referred to, agent-based
manufacturing aims at modeling the manufacturing system as network of individual
decision makers, so-called agents. The agents represent either manufacturing resources,
such as cells, machines, parts, or manufacturing functions, hardware or software
entities; they try to reach a common goal while they also pursuit their own goals.
Márkus and Váncza define heterarchical manufacturing systems as “transformation of
manufacturing organizations” to “network-like, reconfigurable federations where
production is carried out by more or less autonomous and cooperative production
units”. The communication among the agents is accomplished in two fundamental
ways: either using blackboard communication, or using message passing protocol.

18 The term object refers to data structures and algorithms.

 79

Figure 5.1
The concept of virtual manufacturing on the cell level

Blackboard communication is a kind of shared memory communication where all the
agents access a shared storage resource, e.g. a shared memory segment, and they
synchronously and consistently read and write that area. Message passing is based on
network communication when the agents exchange information packets via packets
over the network layer (e.g. the IP layer). Message passing can be used on the enterprise
networks, that connect different elements within the enterprise, and shop-floor networks
that interconnect manufacturing elements, such as machines, workstations.

5.3 Job scheduling

In all manufacturing processes, the schedule of different jobs on different resources is of
fundamental importance. Following Baker [R2] scheduling is the process of planning
and applying optimal job allocation or assignment to the different resources.

 80

Typical scheduling tasks can be classified by using γβα || triples where a

denotes the machining environment, such as the number or type of machines, ß denotes
the job characteristics, like different relations among the jobs, and ? denotes the
optimality criteria. Vízvári gives a thorough survey on the typical scheduling tasks and
their classifications in the domain of manufacturing in [R59].

Finding optimal job schedules is, however, difficult. Mathematically grounded
solutions exist to a limited set of small scheduling tasks only. In most of the cases direct
enumeration does not help either, since the scheduling search space is extremely large
making the evaluation of all states practically infeasible. In order to overcome this
difficulty, either heuristics or some directed search methods driven by artificial
intelligence or learning algorithms are applied. In real manufacturing environments the
demands are even greater, since the schedulers are expected to sense any changes in the
environment and to provide feasible and close-to-optimal re-schedules of the given task.
“In the case of on-line dynamic scheduling there is a time constraint for the scheduler
for finding the best possible result” [R27].

In the rest of the chapter a specific scheduling class, called flow-shop scheduling
is addressed. First the flow-shop task is defined, then a survey on the classical solutions
are given. The classical heuristic solutions are non- improving algorithms, which means
that in unchangeable environment they always provide the same, quasi-optimal solution.
On the other hand, improving algorithms are capable to find better schedules if they
have enough time to evaluate the different possibilities.

We provide a scheduling framework which is capable of dynamic behavior and
which utilizes computational time frames determined by real manufacturing events,
such as job starting and finishing to make directed-search in the scheduling state space.
The search process starts from a firm, but non-optimal solution provided by one of the
classical algorithms and ends up in a new, improved solution if the global optimum is
not reached. As the time goes on, exploration of new schedules gradually turns into
focusing on the best solution, or solutions that have been found. This is the point where
Chapter 3’s simulated annealing combined with reinforcement learning algorithm can
contribute to the general scheduling framework.

5.4 Flow-shop scheduling

5.4.1 The definition of flow-shop scheduling

Flow-shop scheduling is also referred to as pipeline scheduling, and it can be defined as
follows: given a time horizon, m processing machines, n jobs to be executed, a job

 81

execution sequence19 is sought which yields the minimization/maximization a particular
objective function. Let the processing machines be denoted by mmmm ,...,, 21 and the

jobs by njjj ,...,, 21 . All jobs are processed on all machines, no preemption is allowed

and each job as well as each machine is unique. Processing each job on the machines
consumes certain amount of time, which times are structured in a processing time

matrix { }ijt=M where tij is the processing time for job j on machine i.

The optimality criterion of the scheduling problem can be various ranging from
exact cumulative properties to stochastic ones. The most popular criteria are
maximization of throughput, minimization of lateness, minimization of processing
costs. One possible cost is the cost of machines that is spent on waiting for jobs to be
processed. This is often regarded as the sum of off-machining times. For the easy
comparison, throughout this chapter, the off-machining metric is used.

Using the γβα || triplet notation, the flow-shop scheduling is abbreviated as

min|| OFm when each job is allowed to follow each other job, and min|| OprecFm

when precedence relations are defined among different jobs. Fm indicates that the
number of machines can be arbitrary and all jobs are executed on all machines; prec
indicates precedence relations among jobs; Omin denotes minimization of the sum of off-
machining times.

The computation complexity of the general problem, apart from special cases, is
non-polynomial [R59].

5.4.2 Johnson’s algorithm

The first algorithm that solved the 2-machine flow-shop scheduling problem was
published by Johnson in 1957. The philosophy behind the Johnson’s algorithm is “not
to let the second machine wait for processing”. Thus all jobs that have smaller
execution time on the first machine are processed at the beginning, while those jobs that
have shorter execut ion times on the second machine are left behind. This type of
ordering aims at filling the second machine with jobs as soon as possible [R59], thus,
minimizing its off-machining time. Note the simplification that the first machine can
process jobs one after another, without off-machining times.

Figure 5.2 shows a simple 2-machine flow-shop scheduling task involving 4
jobs. In the figure, 4321 ,,, AAAA denote the job execution times on machine A, while

4321 ,,, BBBB those on machine B, and 4321 ,,, XXXX indicate the off-machining

19 Since the job sequence is the only control parameter, it determines the schedule as well, thus the terms
“sequence” and “schedule” are used interchangeably in the flow-shop context throughout this chapter.

 82

times. It is easy to observe that the total length of processing is determined by machine

B as)(
4

1
j

j
j XBT += ∑

=

, or for n jobs as

)(
1

j

n

j
j XBT += ∑

=

.

(5.1)

Figure 5.2
2-machine, 4-job flow-shop scheduling task

Note that the objective is to minimize the sum of off-machining times X, where X is
defined for n jobs as

∑
=

=
n

j
jXX

1

.

(5.2)

5.4.3 Palmer’s method

Johnson’s algorithm can be extended up to 3-machines, but cannot be applied for larger
problems. There are two fundamental approaches to expand the philosophy behind
Johnson’s algorithm above 2 machines: one group of algorithms forms two virtual
machines out of the m machine, and runs Johnson’s algorithm on them; the other group
of algorithms uses the sorting principle applied in the 2-machine case, i.e. the shorter
machining time at the beginning of the pipeline, the earlier execution, or the shorter
machining time at the end, the later the execution.

Palmer’s method belongs to the first class of algorithms. To each job a priority
index is assigned with respect to the corresponding execution times on the different
machines, and then the jobs are sorted in decreasing order of their priority indices
[R33]. Equation 5.3 is used for computing priority values for each job j :

 83

∑
=

 −−

−=
m

i
ijj t

im
I

1 2
)12(

.

(5.3)

5.4.4 Dannenbring’s algorithm

The “quick availability method” worked out by Dannenbring, defines abstract machines
reformulating the m-machine problem into a single 2-machine task where the abstract
machining times (o1j, o2j) are as follows:

∑
=

+−=
m

i
ijj timo

1
1)1(,

∑
=

=
m

i
ijj ito

1
2 .

(5.4)

Johnson’s algorithm is then applied to o1j and o2j to determine the job execution
sequence [R11].

5.4.5 The quality of the solution

The quality of the solution can be expressed in terms of optimality, efficiency,
effectiveness and feasibility [R54].

Optimality means that the solution is the best with respect to the given
optimality criterion. Since the NP-hard nature of the problem, this is rarely guaranteed,
so instead of optimality, quasi-optimality is used. Quasi-optimality is difficult to define;
its meaning ranges from “getting close-to-optimal” to “avoiding worst-case” scenarios.

Efficiency defines the measure how the computational time spent on finding the
solution relates to the time scale of the real processes. An inefficient scheduling
algorithm solves the task within the same time, as the manufacturing system
accomplishes the real manufacturing task.

The purpose of scheduling effectiveness is to measure the distance between the
solution and the theoretical optimum. In practice, however finding the global optimum
is difficult.

Feasibility is used to express that the solution matches all scheduling constraints.

5.5 The structure of the proposed dynamic scheduler

Classical flow-shop scheduling algorithms can be improved by using the appropriate
combination of the concepts mentioned above. In [R27] a service-like architecture,
called scheduling agent is proposed, that is a “system, which in normal static condition

 84

can ensure global performance if other agents follow its command or its advice”. “In
dynamically changing conditions, however, through increased autonomy of agents, a
more dynamic behavior can be reached.” Improving the idea we propose the following
structure:

• using the concept of the scheduling agent,
• in a virtual manufacturing environment,
• where the scheduling algorithm is of an improving type,
• and which can be initialized by one of the classical static scheduling algorithms.

One of the results of using virtual manufacturing concept is that scheduling and

dispatching are functionally separated. Note that scheduling is the way how a job
sequence is created, so the whole scheduling window is examined, while dispatching is
just an execution- like local decision. The differences between the two are discussed by
Kádár in [R17].

5.5.1 General principles

The general idea of using reinforcement learning (RL) combined with simulated
annealing in solving scheduling problems is originated by Zhang and Diettrich [R64].
Their goal was to provide automatic, repair-based, domain-specific heuristics to build
optimal job-resource allocations for the job-shop scheduling problem. In their solution
simulated annealing probabilities appeared as an acceptance factor assigned to a
schedule, and they also used experimental temperature bounds. The novelty of our
proposed solution is that simulated annealing (SA) is used for building the job
sequence, thus no unnecessary or “rejected-in-the-future” schedules are generated, and
due to Theorem 3.2 temperature bounds that can be dynamically computed.

In the routing problem, which is detailed in Chapter 4, the problem definition is
as simple as searching the shortest path between two determined nodes in a network
graph. Consider the graph representation of the flow-shop scheduling task: each job is
represented as a node, each edge a feasible job transition having the expected off-
machining times on the edges. The graph is dynamic and there is a zero cost path from
any node to the starting node whenever no other nodes are remained to traverse. The
goal is to find the shortest possible round trip provided that all nodes are visited once
and only once. In this respect, scheduling problem appears to be similar to the traveling
salesman’s problem (TSP).

To view the flow-shop scheduling as a reinforcement learning problem, the
problem space, i.e. actions and states, and reinforcement functions should be
determined. A significant difficulty is that all RL methods are convergent only if the
decision process is Markovian. Neither the flow-shop scheduling, nor the TSP is
Markovian, since each decision point excludes one or more opportunit ies from the

 85

available future decision set, thus influencing future decisions. This is the reason why
the expression “domain-specific heuristics” is used.

States are crucial parts of RL based algorithms since they uniquely identify the
nature the process in any time step. There are two approaches how states are defined: a
theoretical one, and a practical one. From theoretical aspect, a state is represented as a
job sequence selected so far at any point of the sequencing process. However, in
practical cases it is inconvenient, or even infeasible to store job sequences, especially
for large number of jobs. It is much more convenient to split the sequence into two
parts: the sequence of jobs that have already been selected, and the set of jobs still
available. At the decision point only one job, i.e. the one that terminates the already-
selected job sub-sequence is examined. This gives the natural definition of states as last
jobs in the sub-sequence, and also defines the set of actions as the set of available next-
jobs. “The policy tells what scheduling action to make next in order to maximize some
measure of quality of the final schedule” [R64].

The action-state value of each state-action pair is stored in a nn × matrix, which
is denoted by Q. Row i and column j of the matrix shows the estimated reward of
continuing the job sequence from job i to job j. The update rule defined over action-
state values is as follows:

)max(,1 ijji
j

ijij QQrQQ −++= +
∉s

γα . (5.5)

In the above equation α and γ are the standard RL parameters: learning rate and

discount factor, respectively. Array s denotes the sequence of jobs selected so far. It is
easy to see in the update rule 5.5 that the value-update of any state-action pair is
influenced by the reward received as well as the estimated value of the remaining job
sequence. In graph representation the term ji

j
Q ,1max +

∉s
 is the largest possible value that a

successor job estimates on the reward of the total job sequence. Note that the process is
naturally episodic: each episode consists of a full job-sequence creation. Reward is
provided at the end of each episode, thus whole job sequence is evaluated and
reinforced. This is quite important, since no additional jobs in the partially setup
sequence can be considered as a “further step” to the optimal solution. Recall that the
whole process is not a Markov Decision Process (MDP)!

5.5.2 Evaluation/reward function

Reinforcement values are some measurements of the “fitness” of the job sequence. For
the sake of appropriate comparison a special evaluation function, the off-machining
time, is used. Off-machining time is defined as the sum of times all machines have to
wait for jobs to process from the beginning of processing the first job on the first
machine to the end of processing the last job on the last machine. It is shown in

 86

Appendix D that for a particular job sequence the off-machining time can be computed
by the algorithm shown in Figure 5.3.

Figure 5.3
Algorithm to determine off-machining times

Property 5.1: The computation cost of the evaluation algorithm is proportional to

)(nmO .

The algorithm uses the processing times matrix M and the job sequence permutation
vector p as input and returns the sum of off-machining times. Vector p can take any
permutation of the job indices, when no job precedence relations are set. The control
parameter is also vector p, since the job sequence is sought that minimizes the off-
machining time. In some cases not all machines are free when the first job on the first
machine starts; some machines may finish old, already-running jobs. The expected
finish times on these machines are considered to decrease the initial off-machining
times, thus these times appear as temporal boundary conditions for the evaluation
algorithm and are subtracted at the beginning. Vector b denotes the boundary condition
vector which, in some cases, is purely initialized as a zero-valued array.

The off-machining time values can set up a partial ordering among different job
sequences, and can be used as a reward: the smaller the value, the better the solution. In

input: M(m,n), p(n), b(m);
output: v;
storage: d(n), D(m,n), g(m);
function n_machine (M,p,b)
begin
 v:=0;
 for i:=1 to m do
 g(i):=b(i)-v;
 s(i):=M(i,p(1));
 d(i):=max(0, -g(i));
 D(i,1):=d(i);
 if g(i)<0 then g(i):=0;
 v:=v+M(i,p(1));
 end
 for j:=1 to n do D(1,j):=0;
 for j:=2 to n do
 for i:=1 to m do
 s(i):=s(i)+M(i,p(j));
 D(i+1,j):=max(0,s(i)+d(i)-s(i+1)-d(i+1));
 d(i+1):=d(i+1)+D(i+1,j);
 end
 s(m):=s(m) +M(i,p(j));
 end
 v:=0;
 for i:=1 to m do v:=v+d(i);
end

 87

fact different functions of the reward, such as the square-reciprocal or inverse-signal are
more appropriate to reward good sequences and punish wrong sequences.

5.5.3 Job sequence setup

Job sequence is determined by using equation 3.1. A special vector v is used for storing
the value of the first action. The update rule that modifies initial preferences is similar
to that of 5.5:

)max(,
,

iji
ji

ii vQrvv −++= γα . (5.6)

The method of setting up a job sequence is as follows: First, a probability distribution is
defined over preferences v by using equation 3.1. Then a job is selected randomly with
respect to the defined probabilities. Let the job be denoted by ji. Then the chosen job is
removed from the available set of jobs, i.e. the ith column of matrix Q is masked, and
the uncovered part of the ith row of Q is used for defining another probability
distribution. (Equation 3.1 is applied again.) A job is chosen again with respect to the
new distribution, which, in turn, will also cover a column in matrix Q and marks a new
row of preference values, etc. As a final result, a job sequence is set up, and evaluated
by the algorithm in Figure 5.3.

5.5.4 Update rules

Each evaluation step ends up in updating preference values, thus influencing future job
selection probabilities. Another factor which determines probability values is the
temperature used in the Boltzmann-formula. Since the whole sequencing procedure

consists of n decisions, exactly n+1 different temperature values should be used. kt is
the vector form of the temperature in time step k, where kT1 is the temperature

corresponding to the first decision (the first job), and the sequence k
n

kk TTT 132 ,...,, + is

used for storing temperature values corresponding to the remaining decisions. Note that
exactly one row, the one corresponding to the last job, is unused in the temperature
vector.

Given a time step interval defined by tstart and tend, i.e. the start of the sequencing
process and the intended finish time, an annealing schedule can be defined as follows:

1
minmin

1 −+

−
−

+= n
n
start

n
end

kk t
tt

n
tt

tt

(5.7)

where { }maxmax
iT=t and { }minmin

iT=t , 1,...,2,1 += ni are computed as

 88

2ln
)min()max(max DeDe ii

iT
−

= ,

[]1)dim(ln2
)(max)max(2min

−
−

=
i

ii
iT

e
DeDe

,

(5.8)

where matrix

=

Q
v

D is a nn ×+)1(compound matrix. Note the following:

• When calculating temperature bounds the simplified, but less exact, equations
are used. Original equations of Theorem 3.2 can also be applied to define the
temperature bounds.

• Operator max() provides the largest element of array a; operator min() gives the
smallest element; operator max2() is used for giving the second largest value in
the array; operator dim() returns the dimension of the vector. Recall from
Chapter 3, that 2)dim(>ie !

• Vector ie is the ith row of the)1()1(+×+ nn identity matrix.

5.5.5 Dynamic scheduler

The proposed dynamic scheduler that operates in the virtual part works as follows:
Suppose that all system elements are up and running including the controller (RIS), the
machines (RPS) and the virtual services (VIS and VPS). As an initializing event, the
RIS gets the scheduling task as well as the process plans involving all necessary
manufacturing data, such as expected values of processing times, job and resource
descriptions. The process plans may also include a sequence plan to initialize the RIS.
So far the system is built up in the same way as an ordinary hierarchically controlled
manufacturing system. Whenever the RIS receives a task, it looks for virtual services on
the enterprise network which provides on- line schedule advisory. If this service is not
available, the job sequence provided by the process plan is executed. If the VIS is
found, all manufacturing data are synchronized between the RIS and the VIS, and the
VIS starts the simulation of schedules. Figure 5.4 shows a cycle of activities that are
executed in each simulation step. The RIS waits for a short period of time to get the
initial schedule proposal, and starts executing the first job with respect to its actual
known job sequence. Whenever the RIS receives a sequence proposal, it makes
feasibility checks on it to make sure, that the sequence does not mismatch the already-
executed jobs, and is a feasible (i.e. well- formed) sequence. All infeasible schedule
proposals are discarded by the RIS. Job starting and finishing events are reported to the
VIS by using special synchronization protocols. The virtual system also maintains the
set of already-processed jobs to avoid wasting simulation cycles on producing ill-
formed schedules. The RIS periodically (and also before selecting a new job) asks the

 89

VIS for a new schedule proposal, and if there is one, it is synchronized, and the new job
is selected with respect to the new schedule.

Exploiting the fact that the simulation is definitely faster that the real process,
there is plenty of time to make simulation steps among the job events such as job
starting and finishing, thus making the system flexible. As a basic rule, a time window
which marks the time domain of the annealing process is defined between the job
selection events. In each simulation time step a job sequence is prepared with respect to
the values of the Q matrix. The sequence approaches to the best sequence found if the
temperature values are decreased close to their minimal values, thus a guided search
takes place which starts from random search in the job-sequence state space, and ends
up in a quasi-optimal schedule, as the annealing progresses. Whenever a “next-job”
decision is made, a new time slot is also available which mark a new annealing time
domain, and a new simulated schedule.

Figure 5.4
A VIS Simulation cycle. An extra arrow indicates at the “job sequence setup” block the

entry point of the cycle

5.6 Validation of the model

The proposed model has been extensively tested through randomly generated sample
schedules. We statically compared the RL scheduler to other heuristic methods and also
studied its dynamic behavior.

 90

5.6.1 Static analysis on different models

The validation code is written in C for efficiency reasons. The features of the sample
schedules are summarized in Table 5.1.

Note that the theoretically grounded Johnson’s algorithm can be executed on 2-
machine tasks only. When “large tasks” are compared, only heuristic and RL-based
methods are used. Figure 5.5 shows the comparison of off-machining times computed
by Johnson’s algorithm, Palmer’s method, Dannenbring’s method and RL-based
simulated annealing method as the function of the number of jobs.

It is trivial to see that neither the heuristic nor the RL-based method can produce
better results, than Johnson’s algorithm, since it provides the theoretical optimum. In the
2-machine layout, Dannenbring’s method produces the worst approach on average,
while by using Palmer’s indices the difference is significant only when the optimal off-
machining times are relatively small. The Boltzmann-annealing based RL scheduler was
able to find the theoretical value in most of the cases.

Parameter Value
Maximum number of jobs 100
Maximum number of machines 40
Minimal job execution time 5 TU20
Maximal job execution time 25 TU
Precedence constraints None

Table 5.1

Properties of sample schedule plans

Parameter Value
Learning rate 0.2
Discount rate 0.8
Annealing schedule polynomial annealing (n=5) with

variable temperature bounds
Exploration interval proportional to the square of

the number of jobs

Table 5.2
Summary of the RL-scheduler parameters

20 TU represents “time units”. Since the samples are generated randomly, all off-machining time values
are dimensioned in an abstract unit called TU.

 91

Figure 5.5
Off-machining times vs. the number of jobs diagram for two machines (m=2).

Boltzmann-annealing curve runs together with the Johnson’s algorithm curve in most of
the cases

Figure 5.6
Off-machining times vs. number of jobs diagram for large number of machines (m=40)

 92

In Figure 5.6 a similar comparison is shown but for large number of machines,

40. It is easy to see that the RL-based method produces definitely smaller off-machining
times than classic heuristic models. The key parameters of the RL scheduler are
summarized in Table 5.2.

5.6.2 Dynamic behavior

The dynamic test analyzes the scheduler’s temporal behavior. Figure 5.6 shows the slice
of simulated off-machining times vs. the number of simulation steps diagram of a 20-
job 20-machine flow-shop scheduling task.

Figure 5.6
Dynamic behavior of the scheduler

For illustration reasons the annealing time was set to 95% of the value suggested in the

previous sections,
RISofparameterspeed
VISofparameterspeed

m j ___

95.0 1 , i.e. the 95% of the estimated

time of the selected job’s execution. An annealing schedule is thus shorter than the
affordable exploration time in a, say, production system. The gray area shows the
exploration cycles after selecting a new job, the gaps among the cycles are the
exploitation periods. During the simulation the best job sequence is maintained just in
the case the job is executed earlier than the simulated annealing, and job sequence

 93

request would arrive before finishing the exploration. The off-machining times
corresponding to the best job sequence is indicated by the black line in the figure.

The simulation starts when the VIS receives all the necessary information. The
initial exploration time is usually set to some experimental value. It is easy to see that in
the given example the off-machining times of the proposed schedules decrease from
5000 to 4100. The latter value is kept as a quasi-optimal solution in the next exploration
period. In the third exploration period, around simulation time step 33000, an
unexpected event occurs: the machining times vary due to some machine failures in the
execution of certain jobs, and the estimated off-machining of the stable job sequence
goes up to 4250. Since the job sequence is considered as a quasi-optimum, it would be
kept if there was no VIS in the system, thus escalating the failure further in the
manufacturing pipeline with respect to time delays. However, the changes are reported
to VIS, which is found to be in the exploration period, and which tries to find a new
partial job sequence being more appropriate to the modified parameters. As a result of
re-scheduling, the estimated off-machining time descends around 4150. It is important
that the disturbance occurs before the end of an exploration period, thus the schedule is
improved significantly only in the next period. Note that during the simulation the RPS
starts and finishes jobs which cannot be executed once again. The already-executed-jobs
are considered to be invariables to the VIS simulation.

5.7 Implementation of precedence constrains

So far no job precedence relations have been defined among jobs. In real life
applications, however, constraints exist and represent either preferential ordering, or
mandatory precedence. E.g. it is not reasonable to start with a finishing operation, and
follow a roughing one.

There are two approaches to treat precedence relations: The first approach is
often regarded as selection methods, when feasible sequences are selected from
arbitrary defined general sequences, like in the case of genetic algorithms’ repair
methods [R27]. This method has the drawback of spending resources (processor time,
memory) on finding solutions which will be surely rejected due to mismatching the
constraints.

The other approach allows only those job sequences to be built which surely
satisfy all precedence constraints. A precedence constraint can be described as an if-
then-rule in the following form

21
: lll jjc → , Cl ,...,2,1= , nll ,...,2,1, 21 = (5.9)

where C is the number of constraints, lc is the constraint identifier and job

1l
j must be

executed prior to job
2l

j . Indices l1 and l2 are job indices.

 94

The left hand side of the expression is the condition part, while the right hand
side is the conclusion part. All constraints are summarized in a constraint set denoted by
C.

The next key question that emerges: How can restricted job sequences be built
based on constraint set C? The answer comes from the meaning of the constraint: i.e.
execution of the conclusion part is forbidden as long as the condition is not satisfied. It
means that when the sequence is created, special attention should be paid to jobs being
in the conclusion part of any rule C. For all those jobs the action selection probability
values are set to 0 regardless to their preferences. This method prevents the job in the
conclusion to be selected, as long as the condition job is not completed.

In the computation, the algorithm covers all columns of matrix Q corresponding
to any constraint conclusion. Whenever a job is selected, the constraint set is sought if
the selected job is in the condition part of any constraint. If so, the column
corresponding to the consequence of the constraint is uncovered, thus the scheduler
allows probability values that correspond to the conclusion part to have nonzero values.
The method works for transitive dependencies and constraint disjunctions as well.

Since the set of constraints can be inconsistent, a special check is needed before
the first sequence is made to discover if the constraint rules really define partial
ordering among jobs. If there is any cycle in the constraint set, there is no ordering, and
the constraints define “impossible” task.

5.8 Discussion

In this chapter a novel scheduling concept was shown that implements on-line support
for dynamic flow-shop scheduling and integrates the virtual manufacturing concept and
reinforcement learning to form a scheduling agent.

Virtual manufacturing implements a kind of service to the real manufacturing
system: it simulates different manufacturing layouts in the fraction of time of the real
processes and makes schedule proposals whenever they are asked for. When no exact
algorithms exist to solve a scheduling problem, improving algorithms such as RL
combined with SA can be used as the “learning module” of the agent. The combined
algorithm exploits the results of the temperature bounds theorem shown in Chapter 3
and gives reasonable improvement of classical heuristic solutions with respect to off-
machining times. Furthermore, the agent can make corrected proposals if some
unexpected event, such as machine failure occurs. Static algorithms can be easily used
for cost efficiently initializing the scheduling agent.

Precedence constrains are treated naturally by the special “matrix covering”
technique.

 95

Chapter 6

Summary and Future Work

In the dissertation combined reinforcement learning concepts, problems, proposed
solutions, algorithms and application examples have been shown. Our contributions to
this broad and continuously evolving interdisciplinary scientific domain can be
classified around three topics:

1) We proposed a general simulated annealing model tailored to reinforcement

learning which lets the learning agent make smooth exploration and exploitation
balancing in a defined control parameter domain.
a) We used the Boltzmann distribution for assigning probability values to

individual decision actions. It was shown that if the control parameter,
temperature T converges to infinity, the probability distribution approaches the
uniform distribution, and if T converges to 0, the probability distribution
approaches to the greedy distribution.

b) We showed that uniform and greedy distributions can be approached with a
sufficiently small error, say ε , at finite and nonzero values of T, whenever the
preference values are also finite. The smallest T value which guarantees uniform
distribution within error level ε and the largest T value that guarantees greedy
distribution within the error level ε were determined.

c) We worked out a simulated annealing method which defines an annealing
schedule between the extremes of T, on a given time horizon.

d) The model was validated on the “n-armed bandit” problem test-bed.

2) The Boltzmann distribution based simulated annealing model was applied in

distributed shortest-path computation, and a new combined Q-learning and
Boltzmann annealing based routing algorithm was developed which solves the “loop
detection” and the “path recovery” problems of the Q-routing algorithm.
a) We showed that the convergence of Q-learning under distributed action-state

value representation is retained.
b) A loop detection framework was added to the Q-routing model, which aids to

reward acyclic parts of a delivery path, and to punish those parts that make up
the cycle.

c) A re-annealing protocol framework was also proposed to support path recovery
when router or link comes into normal operation again after recovering damage.

 96

d) A protocol extension was proposed on the “option-level” of the Internet Protocol
version 4 standard.

e) The whole annealing model was validated on our Java-based distributed network
simulator program.

3) An integrated reinforcement learning and simulated annealing based scheduling

agent was proposed that uses the concept of virtual manufacturing. The agent is
capable to propose improving flow-shop schedules, on-line, and is capable to follow
environmental changes, such as machine breakdowns.
a) A sequencing method based on Boltzmann annealing defined preference values

was developed.
b) An evaluation algorithm (reward function) was derived to determine off-

machining times for the flow-shop scheduling.
c) We compared the model to other heuristic methods were made, both in static

and dynamic aspects.
d) A real system-virtual system communication protocol was proposed, and the

scheduling agent and its test framework were implemented.

The three areas mark three possible directions of future development :

• The annealing model can be improved in two ways: It would be interesting to
examine the behavior of the Boltzmann distribution over the set of complex
numbers and to examine how annealing schedules and application domains are
interrelated.

• Implementing the proposed routing protocol within the frameworks of ordinary
dynamic routing protocols is also a key issue, which would open the possibility
of real- life testing for a broad range of users.

• The proposed scheduler agent is only the first step toward the implementation of
intelligent, on- line “services” to support real manufacturing systems. It is still
interesting questions how the proposed framework can be used for supporting
different scheduling (or not necessarily scheduling) problems, or how the agent
can be made more intelligent in terms of utilizing feed-back from the real
manufacturing systems.

 97

References

[R1] Ahuja, R.; Magnanti, T.L.; Orlin, J.B.: Network flows, Prentice Hall, 1993
[R2] Baker, A.: Case study results with the market-driven contract net protocol

planning and control system, Proceedings of the AUTOFACT Vol. 31, 1992, pp.
17-55

[R3] Baker, A.: A survey of factory control algorithms that can be implemented in
multi-agent heterarchy: dispatching, scheduling and pull, Journal of
Manufacturing Systems Vol. 37, pp. 297-320

[R4] Bellman, R: Dynamic Programming, Princeton University Press, 1957
[R5] Bongaerts, L.; Monostori, L.; McFrlane, D.; Kádár, B.: Hierarchy in distributed

shop-floor control, Computers in Industry Vol. 43, 2000, pp. 123-137
[R6] Boyan, J. A.; Littman, M. L.: Packet routing in dynamically changing networks:

a reinforcement learning approach, Advances in Neural Information Processing
Systems Vol. 6, 1993, pp. 671-678

[R7] Braden, R: Requirements for internet hosts, RFC 1122,
http://www.ietf.org/rfc/rfc1122.txt

[R8] Chapman, D.; Kaelbling, L.P.: Input generalization in delayed reinforcement
learning: an algorithm and performance comparisons, Proceedings of the
International Joint Conference on Artificial Intelligence, Sydney, Australia,
1991, pp. 726-731

[R9] Choi, S. P. M.; Yeung, D.: Predictive Q-routing: a memory-based reinforcement
learning approach to adaptive traffic control, Advances in Neural Information
Processing Systems Vol. 8, 1996, pp. 231-238

[R10] Crites, P.H.; Barto, A.: Improving elevator performance using reinforcement
learning, Advances in Neural Information Processing Systems Vol. 8, MIT
Press, 1996

[R11] Dannenbring, D.G.: An evaluation of flow-shop sequencing heuristics,
Management Science Vol. 23(11), 1977, pp. 1174-1182

[R12] Gullapalli, V.: A stochastic reinforcement learning algorithm for learning real-
valued functions, Neural Networks, 1990, pp. 671-692

[R13] Hatvany, J.; Nemes, L.: Intelligent Manufacturing Systems – a tentative forecast,
Proceedings of the VIIth IFAC World Congress Vol. 2, 1978, pp. 895-899

[R14] Hedrick, C.: Routing Information Protocol, RFC 1058,
http://www.ietf.org/rfc/rfc1058.txt

 98

[R15] Heragu, S.; Graves, R.; Kim, B.: Intelligent agent-based framework for
integrating planning and design in material handling systems, St. Onge
Company, 2002

[R16] Kaelbling L.P.; Littman, M.; Moore A.J.: Reinforcement learning: a survey,
Journal of Artificial Intelligence Research Vol. 4, 1996, pp. 237-285

[R17] Kádár, B.: Ph.D. thesis, Technical University of Budapest, 2001
[R18] Kohavi, R; Provost, F: Glossary of terms, Special issue on machine learning and

knowledge discovery processes, Machine Learning Vol. 30, 1998, pp. 271-274,
http://robotics.stanford.edu/~ronnyk/glossary.html

[R19] Kohonen, T: Self-organizing Maps, Springer Series in Information Sciences,
Springer, Berlin, 2001

[R20] Kuipers, F. A.; Korkmaz, T.; Krunz, M.; Van Mieghem, P.: Overview of
constraint-based path selection algorithms for QoS routing, IEEE
Communications Magazine, 2002

[R21] Kumar, S; Miikkulainen, R.: Dual reinforcement Q-routing algorithm: an on- line
adaptive routing algorithm, Proceedings of Artificial Neural Networks in
Engineering, 1997, pp. 231-233

[R22] Mahnig, T.; Mühlenbein, H.: A New Adaptive Boltzmann Selection Schedule
SDS, Congress of Evolutionary Computations, 2001, pp. 183-190

[R23] Malkin, G.: RIP version 2 protocol analysis, RFC 1387,
http://www.ietf.org/rfc/rfc1387.txt

[R24] Márkus, A. ; Váncza, J.: Product line development with customer interaction,
Annals of the CIRP Vol. 46/1, pp. 361-364

[R25] Monostori, L.: Intelligent manufacturing systems, D.Sc. Dissertation, Hungarian
Academy of Sciences, 1998

[R26] Monostori, L.; Márkus, A.; Van Brussel, H.; Westkämper, E.: Machine learning
approaches to manufacturing, CIRP Annals Vol. 45, No. 2, 1996, pp. 675-712

[R27] Monostori, L.; Hornyák, J.; Kádár, B. : Novel approaches to planning and
control, Computers in Industry, Elsevier, 1998, pp. 97-113

[R28] Moore, A.W., Atkeson, C.G.: Prioritized sweeping: Reinforcement Learning
with less data and less real time, Machine Learning Vol. 13, 1993, pp. 103-130

[R29] Moy, J.: The OSPF specification, RFC 1131, http://www.ietf.org/rfc/rfc1247.pdf
[R30] Nagle, J.: Congestion control in IP/TCP internetworks, RFC 896,

http://www.ietf.org/rfc/rfc896.txt
[R31] Nuijten, W.; Le Pape, C.: Constraint-based job shop scheduling with Ilog

scheduler, Journal of Heuristics, Kluwer Academic Press, 1998, pp. 271-286
[R32] Numerical recipes in C: The art of scientific computing, Cambridge University

Press, 1998, http://www.nr.com

 99

[R33] Palmer, D.S.: Sequencing jobs through a multi-stage process in the minimum
total time-a quick method of obtaining near optimum, Operation Research
Quarterly Vol. 16, No. 3, 1965, pp. 101-107

[R34] Pierre, S.; Said, H.; Probst, W.G.: Routing in computer networks using artificial
neural networks, Artificial Intelligence in Engineering Vol. 14, 2000, pp. 295-
305

[R35] Postel, J.: Internet protocol, RFC 791, http://www.ietf.org/rfc/rfc791.txt
[R36] Postel, J.: Internet control message protocol, RFC 792,

http://www.ietf.org/rfc/rfc792.txt
[R37] Rekhter, J.: The NFSNET Backbone SPF based Interior Gateway Protocol, RFC

1074, http://www.ietf.org/rfc/rfc1074.txt
[R38] Description if Interior Gateway Routing Protocol (IGRP), Cisco,

http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/igrp.htm
[R39] RFC 1105, http://www.ietf.org/rfc/rfc1105.txt
[R40] Routing algorithms, http://www.cisco.org
[R41] Rummery, J.A.: Problem solving with reinforcement learning. Ph.D. thesis,

Cambridge University, 1995
[R42] Sandholm, T.; Crites, R.: On multiagent Q-learning in a semi-competitive

domain, 14th International Joint Conference on Artificial Intelligence (IJCAI-
95) Workshop on Adaptation and Learning in Multiagent Systems, Montreal,
Canada, 1995, pp 71-77

[R43] Scheduling in nutshell, http://www.nnh.com/ev/nut2.html
[R44] Singh, S.; Jaakkola, T.; Littman, M.; Szepesvári, Cs.: Convergence results for

single-step on-policy reinforcement learning algorithms, Machine Learning
Journal Vol. 38(3), 2000, pp. 287-308

[R45] Socolofsky, T.: A TCP/IP tutorial, RFC 1180,
http://www.ietf.org/rfc/rfc1180.txt

[R46] Sutton, R.; Barto, A.: Reinforcement Learning (An Introduction), The MIT
Press, London, England, 1998

[R47] Sutton, R.: Dyna, an integrated architecture for learning, planning and reacting,
SIGART Bulletin Vol. 2, 1991, pp. 160-163

[R48] Sutton, R.: TD models: Modeling the world at a mixture of time scales,
Proceedings of the Twelfth International Conference on Machine Learning,
1995, pp. 531-539

[R49] Szepesvári, Cs.: The asymptotic convergence-rate of Q-learning, Neural
Processing Information Systems, 1997, pp. 1064-1070

[R50] Szepesvári, Cs.; Littman, M.: A generalized reinforcement- learning model:
convergence and applications, Proceedings of the Thirteenth International
Conference on Machine Learning, 1996

 100

[R51] Tanenbaum, A.: Computer networks, Panem Press, 1996
[R52] Tóth, T. : Planning principles, models and methods in computer integrated

manufacturing (in Hungarian), University of Miskolc, University Press, 1998
[R53] Tóth, T. : The range of concept and the sphere of authority of computer aided

manufacturing, Computer Integrated Manufacturing, Miskolc, 1997, pp. 2-21
[R54] Trentesaux, D.; Pesin, P.; Tahon, C.: Distributed artificial intelligence for FMS

scheduling, control and design support, Journal of Intelligent Manufacturing
Vol. 11, 2000, pp. 573-589

[R55] Ueda, K.; Márkus, A.; Monostori, L.; Kals, H.J.J.; Arai, T.: Emergent synthesis
methodologies for manufacturing, Annals of the CIRP Vol. 50/2, 2001, pp. 535-
547

[R56] Ünver, Ö.; Anlagan, Ö.; Kiliç, E.; Cangar, T.: A structured methodology for
development of heterarchical control software for manufacturing cells, using
Windows DNA, Proceedings of the IASTED International Conference
Intelligent Systems and Control, 2000

[R57] Váncza, J., Márkus, A. : An agent model for incentive-based production
scheduling, Computers in Industry, 2000, pp. 173-187

[R58] Viharos, Zs. J.: Application capabilities of a general, ANN based cutting model
in different phases of manufacturing through automatic determination of its
input-output configuration; Journal of Periodica Politechnica - Mechanical
Engineering Vol. 43, No. 2, 1999, pp. 189-196

[R59] Vízvári, B.: Introduction to the mathematical models of production planning and
scheduling (in Hungarian), ELTE University Press, Budapest, Hungary 1994

[R60] Watkins, C.; Dayan, P.: Q-learning, Machine Learning Vol. 8, 1992, pp. 279-
292

[R61] Wiering, M.; Schmidhuber, J.: Fast online Q(λ), Machine Learning Vol. 33(1),
1998, pp. 105-116

[R62] http://www.linuxdocs.org/HOWTOs/Adv-Routing-HOWTO.html
[R63] Yamada, T.; Reeves, C.: Solving the Csum permutation flowshop scheduling

problem by genetic local search, ICEC’98, 1998, pp. 230-234
[R64] Zhang, W.; Diettrich, T.: A reinforcement learning approach to job-shop

scheduling

 101

List of Publications

In English

[P1] Stefán, P.; Monostori, L.: Shop-floor scheduling based on reinforcement

learning algorithm, 3rd CIRP International Seminar on Intelligent
Manufacturing, ICME 2002, Ischia, Italy, 2002, pp. 71-74

[P2] Stefán, P.; Monostori, L.; Vaskó, Z: Quasi-optimal solution to the traveling
salesman's problem in variable environment, 3rd international conference of
Ph.D students, University of Miskolc, 2001, pp 415-422

[P3] Stefán, P.; Monostori, L.: On the relationship between learning capability and
the Boltzmann-formula, Engineering of Intelligent Systems, Lecture Notes in AI
2070, IEA/AIE-01, 14th International Conference o n Industrial & Engineering
Applications of Artificial Intelligence & Expert Systems, Budapest, Hungary,
June 4-7, 2001, Springer Book, pp. 227-236

[P4] Stefán, P.; Monostori, L.; Erdélyi, F.: Reinforcement learning for solving
shortest-path and dynamic scheduling problems, 3rd International Workshop on
Emergent Synthesis, IWES'01, Bled, Slovenia, 2001, pp. 83-88, ISBN 961-
6238-49-3

[P5] Stefán, P.; Monostori, L.: On Internet routing problems in dynamically changing
environment, MicroCAD International Meeting on Information Technology and
Computer Science, University of Miskolc, Hungary, 2001, pp. 221-216, ISBN
963-661-457-1

[P6] Monostori, L.; Kádár, B.; Viharos, Zs.J.; Stefán, P.: AI and machine learning
techniques combined with simulation for designing and controlling
manufacturing processes and systems, Preprints of the IFAC Symposium on
Manufacturing, Modeling, Management and Supervision, MIM 2000, Patras,
Greece, 2000, pp. 167-172

[P7] Monostori, L.; Kádár, B.; Viharos, Zs.J.; Mezgár, I.; Stefán, P.: Combined use of
simulation and AI/machine learning techniques in designing manufacturing
processes and systems, Proceedings of the 2000 International CIRP Design
Seminar on Design with Manufacturing: Intelligent Design Concepts Methods
and Algorithms, Haifa, Israel, 2000, pp. 199-204

[P8] Stefán, P.; Monostori, L.; Pupp, Z.: Reinforcement learning methods in
information engineering, MicroCAD International Meeting on Information
Technology and Computer Science, University of Miskolc, Hungary, 2000

 102

[P9] Pupp, Z.; Stefán, P.: Novel applications of self-organizing maps in information
technology problems, MicroCAD International Meeting on Information
Technology and Computer Science, University of Miskolc, Hungary, 2000

[P10] Stefán, P.; Monostori, L.; Erdélyi, F.: Using symbolic and sub-symbolic
methods in solving problems difficult to analyze, MicroCAD International
Meeting on Information Technology and Computer Science, University of
Miskolc, Hungary, 1999, pp. 195-200

In Hungarian

[P11] Stefán, P: Megerosíto tanulási módszerek alkalmazása Internet Routing

problémák megoldására, Fiatal Muszakiak V. Tudományos Ülésszaka, Bolyai
Egyetem, Kolozsvár, Románia, 2000, pp. 1-4

[P12] Stefán, P: Szimbolikus és szub-szimbolikus módszerek az analitikailag nehezen
kezelheto problémák megoldásában, Fiatal Muszakiak IV. Tudományos
Ülésszaka, Bolyai Egyetem, Kolozsvár, Románia, 1999, pp. 137-140

[P13] Stefán, P.: Megerosíto tanulási módszerek alkalmazása az informatikában,
Doktoranduszok fóruma, Miskolci Egyetem, 1999, pp. 65-70

 103

Appendix A

Proofs to Temperature Bounds Theorems

Theorem 3.1: If temperature T approaches infinity, the action selection probability of
all the actions approaches the uniform distribution; if T goes to zero the probability of
selecting the strictly highest Q-valued action goes to 1, while the selection probability
of others’ goes to 0. If there are k maximal equally preferred actions, the probability of

making selections from among these actions goes to
k
1

 as T goes to zero.

Proof 3.1: First, transformation of the Boltzmann-formula is required serving as the
starting point of all proofs through the rest of the appendix.

∑∑∑∑∑
=

−

=

−

=
==

=====
n

j

T

QQn

j

T
Qi

T

Q
n

j T
Qi

T

Q

T
Q

n

j

T

Qn

j

T

Q

T
Q

i ijjj

i

jj

i

ee

e

e

e

ee

e
p

11
1

11

1111

(A1)

The parameters’ domain is set to

Z⊂∈],[maxmin QQQi , ni ,...,2,1= ,
R⊂∈]1,0[ip , ni ,...,2,1= .

Here Z denotes the set of integers and R denotes the set of real numbers.

Since, || ij QQ − is finite ji,∀ , and 0lim =
−

∞→ T
QQ ij

T
,

n
eeee

p
n

j

T

QQ

T

QQn

j
T

n

j

T

QQ

T

n

j

T

QQTiT ij

T

ijijij

11

lim

1

lim

11
limlim

1

lim

111

=====

∑∑∑∑
=

−−

=
∞→

=

−

∞→
=

−∞→∞→
∞→

.

The case of temperature approaching infinity has, therefore, been proved.
In the second case, when temperature approaches zero, there are two sub-cases: the first
one is when there is only one maximal preference value, and the second one is when
there are k equal and maximal preference values.

 104

Before deriving the limit expressions, equation A1 should be further transformed. Since
j runs from 1 to n, it is necessary that ij = be satisfied at least once. Thus,

∑∑
≠
=

−

=

−

+

=
n

ij
i

T

QQn

j

T

QQ ijij

ee
11

1

11
.

(A2)

If ji QQ > , for ijnj ≠= ,,...,2,1 , then −∞=
−

→ T
QQ ij

T 0
lim , and 0lim

0
=

−

→
T

QQ

T

ij

e , and hence

1

1

1
lim

1

0
=

+ ∑
≠
=

−→ n

ij
j

T

QQT ij

e

.

If j∃ , for which ij QQ > , then ∞=
−

→ T
QQ ij

T 0
lim , and ∞=

−

→
T

QQ

T

ij

e
0

lim , and therefore

0

1

1
lim

1

0
=

+ ∑
≠
=

−→ n

ij
j

T

QQT ij

e

.

If jiii QQQQ

k
>=== ...

21
, for nj ,...,2,1= , lij ≠ , kl ,...,2,1= , then the formula A2

becomes

∑∑
=≠
=

−

=

−

+

=
n

klij
i

T
QQn

j

T
QQ

l

lijij

eke

,..,2,1,
11

11
.

For the rest of Qjs 0lim
0

=
−

→
T

QQ

T

lij

e , and therefore

k
ek

n

klij
j

T

QQT lij

11
lim

..,2,1,
1

0
=

+ ∑
=≠
=

−→
. <

 105

Theorem 3.2: Consider, 0>ε , as a small positive number, and an upper and a lower
bound on Q-values, Qmax and Qmin. The following inequalities are held under these
circumstances:

(a) ε<−
n

pi
1

 if

 +

−

−
>

ε
ε

n
n

QQ
T

1,
1

1
minln

minmax , for ni ,...,2,1= and

(b) ε<− ip1 if

−

 −

<
)1(1

1
ln n

T

ε

κ
, where ijQQ ji ≠> , , ji

QQ
ij

nj
QQ

ji

−=

≠
≠

= ,..,1
minκ .

Note that κ is the minimal difference between the largest and second largest Q-value,
and due to the discrete nature of Qs, this difference is minimally 1. Also note that only a
single value is allowed to maximize Q.

It is the simpler part to establish (a), since the upper bound of temperature comes from
the limitation of Q-values. The goal is as follows:

ε<−
n

pi
1

,

εε +<<−
n

p
n i

11
,

εε +<<−

∑
=

− n
e

n n

j

T

QQ ij

111

1

.

(A3)

It comes from the preconditions, that],[, maxmin QQQQ ji ∈ , which can be written as

maxmin , QQQQ ji ≤≤ , for ji,∀ . So it is easy to see that,

∑∑
=

−

=

−
≤

n

j

T

QQn

j

T

QQ ijj

ee
11

11
min

,

(A4)

since T

QQ

T

QQ jij

ee
min−−

≤ , and
T
QQ

T
QQ jij min−

≤
−

, and minQQi ≥ is always true. It is also

true that

∑∑
=

−

=

−
≤

n

j

T

QQn

j

T
QQ j

ee
11

minminmax

11
,

(A5)

 106

since T
QQ

T

QQ

ee
j minmaxmin −−

≤ , and
T

QQ
T
QQ j minmaxmin −

≤
−

, and maxQQ j ≤ .

Putting inequalities A4 and A5 together a lower bound on pi is received. Following
similar reasoning, an upper bound can also be determined, and the two bounds for pi can
be written as

n
e

eeene

T
QQ

n

j

T
QQn

j

T

QQn

j

T
QQ

T
QQ ij

minmax

maxminminmaxminmax

111

1111
−

=

−

=

−

=

−− =≤≤=

∑∑∑
.

(A6)

An ε should be found for which the bounds of equation A3 is held to the bounds of
equation A6 as well. Hence, the stricter property is formulated as

T
QQ

ne
n minmax

11
−

<− ε ,

(A7)

ε+<

−

nn
e T

QQ

1
minmax

.

(A8)

Denoting the term T
QQ

e
minmax −

 by x, formulas A7and A8 take the form of

nxn
11

<− ε ,

ε+<
nn

x 1
.

Arranging these formulas to x, the lower limit of x is given as

 +

−
< ε

ε
n

n
x 1,

1
1

min .

Replacing x with the original exponential phrase,

 +

−
<

−

ε
ε

n
n

e T
QQ

1,
1

1
min

minmax

,

 +

−
<

−
ε

ε
n

nT
QQ

1,
1

1
minlnminmax ,

 107

 +

−

−
>

ε
ε

n
n

QQ
T

1,
1

1
minln

minmax .

(A9)

As for the (b) part of Theorem 3.2, the theoretical lower bound of the temperature is
naturally 0, but using zero temperature causes division by zero error during numerical
computations. So, in practical applications the lower limit of the temperature must be
slightly higher than zero, even high enough to avoid floating point errors, but small
enough to guarantee greedy probability distribution at the specified error level.

Since the probability pi can never be larger than 1, instead of equation ε<− ip1 ,

equation ε<− ip1 is considered. It was clear in part (a), that bounds on pi values must

be found, but in this special case only lower bound of pi is to be examined. Taking the
form of equation A2 of the Boltzmann formula, the lower bound can be set as

∑∑
≠
=

−

≠
=

−

+

<
+

n

ij
j

T

QQn

ij
j

T
ij

ee
11

1

1

1

1
κ

(A10)

for some κ . Getting denominators disappeared, the previous inequality is held if

TT

QQ

ee
ij κ−−

< , nj ,...,2,1= , ij ≠ , which yields κ−<− ij QQ , thus κ>− ji QQ . In the

preconditions of the theorem it was stated that Qi is the highest among all Q-values,
therefore

ji

ij
nj

QQ −=
≠

= ,..,1
minκ (A11)

Returning to ε<− ip1 , the inequality must also be true, if the value pi is replaced by a

stronger constraint, by the left-hand side part of inequality A10. So,

ε
κ

<

+

−

∑
≠
=

−n

ij
j

Te
1

1

1
1 ,

T
n

ij
j

T ene
κκ

ε
−

≠
=

−

−+

=

+

<−

∑)1(1

1

1

1
1

1

,

1)1(1)1(<

−+−

−
Ten
κ

ε ,

 108

)1)(1(1

1
1

1

−−
=

−

−
−<

−

nn
e T

ε
εε

κ

,

)1)(1(
ln

−−
<

−
nT ε

εκ
.

Due to the division by a negative number the relational signal turns over, and the lower
temperature bound is expressed as

−

 −

=

−−

−
<

)1(1
1

ln)1)(1(
ln nn

T

ε

κ

ε
ε
κ

. <

(A12)

 109

Appendix B

Routing Table Example from a CISCO 12000
Router

Figure B1
Routing table excerpt from a CISCO 12000 router

#sh ip route
Codes: C-connected, S-static, I-IGRP, R-RIP, M-mobile, B-BGP
 D-EIGRP, EX-EIGRP external, O-OSPF, IA-OSPF inter area
 N1-OSPF NSSA external type 1, N2-OSPF NSSA external type 2
 E1-OSPF external type 1, E2-OSPF external type 2, E-EGP
 i-IS-IS, L1-IS-IS level-1, L2-IS-IS level-2, ia-IS-IS inter ar.
 *-candidate default, U-per-user static route, o-ODR

Gateway of last resort is not set

B 208.221.13.0/24 [20/0] via 62.40.103.73, 1w3d
B 206.51.253.0/24 [20/0] via 62.40.103.73, 1w3d
B 205.204.1.0/24 [20/0] via 62.40.103.73, 1w3d
B 216.103.190.0/24 [20/0] via 62.40.103.73, 1w3d
B 213.239.59.0/24 [20/0] via 62.40.103.73, 1w3d
B 213.152.76.0/24 [20/0] via 62.40.103.73, 00:19:06
B 212.205.24.0/24 [20/0] via 62.40.103.73, 1w0d
 209.16.192.0/25 is subnetted, 1 subnets
B 209.16.192.128 [20/0] via 62.40.103.73, 1w3d
B 207.254.48.0/24 [20/0] via 62.40.103.73, 1w3d
B 205.152.84.0/24 [20/0] via 62.40.103.73, 1w3d
B 203.171.97.0/24 [20/0] via 62.40.103.73, 1w3d
B 203.1.203.0/24 [20/0] via 62.40.103.73, 1w3d
B 198.205.10.0/24 [20/0] via 62.40.103.73, 4d16h
B 192.35.226.0/24 [20/0] via 62.40.103.73, 6d12h
 170.171.0.0/16 is variably subnetted, 4 subnets, 2 masks
B 170.171.0.0/16 [20/0] via 62.40.103.73, 1w3d
B 170.171.251.0/24 [20/0] via 62.40.103.73, 1w3d
B 170.171.253.0/24 [20/0] via 62.40.103.73, 1w3d
B 170.171.252.0/24 [20/0] via 62.40.103.73, 1w3d
S 193.224.167.0/24 [1/0] via 193.6.21.142
O 157.181.141.0/29
 [110/2] via 195.111.97.170, 1d06h, GigabitEthernet2/1.912
O 193.225.57.232 [110/2] via 195.111.97.68, 1d06h, POS1/2
C 193.6.27.0/25 is directly connected, GigabitEthernet3/2
S 193.6.27.62/32 [1/0] via 193.188.137.31
S 193.6.27.62/32 [1/0] via 193.188.137.31
S 193.6.27.63/32 [1/0] via 193.188.137.46
B 192.23.11.0/24 [20/0] via 62.40.103.73, 1w3d
B 192.6.26.0/24 [20/0] via 62.40.103.73, 05:27:22
O IA 195.111.97.225/32 [110/3] via 195.111.97.67, 1d06h, POS1/1
O IA 195.111.97.224/32 [110/3] via 195.111.97.68, 1d06h, POS1/2
O IA 195.111.97.227/32 [110/3] via 195.111.97.66, 1d06h, POS1/0

 110

Appendix C

IP Packet Format Extensions of the Boltzmann-
exploration Q-routing Algorithm

In this appendix the protocol specification of the Boltzmann-annealing based routing
algorithm can be found. Though the simulator is written over UDP protocol, the concept
can be implemented using slight modifications in the IP header. Figure C1 illustrates the
original IP header specified in [R35], Figure C2 illustrates IP header holding the
proposed extensions for data packet types.

Figure C1
The specification of the IP packet header. Each row consists of four bytes

The meaning of the individual fields is as follows:

• Version: In case of IP version 4 this field is set to 4.
• Header Length (HL): the length of the header in 32-bit units. The maximal

allowable length is 60 bytes.
• Type of Service (TOS): This field can be used by routers which implement

priorities and quality of service in transmitting IP-packets.
• Datagram length: The length of the whole datagram including the header.
• Sequence number: Unique identifier of a packet on particular source.
• Flags: Used for indicating fragmentation.
• Offset: Used for indicating fragments’ order.

 111

• Time to Live (TTL): The maximum allowable life-time of the packet.
• Protocol: The field is used for indicating higher level protocols such as TCP or

UDP.
• Checksum: CRC checksum computed for the whole packet.
• Source IP address: Identifier of the source node.
• Destination IP address: Identifier of the destination node.
• Options: Special options for specific usage, e.g. source routing.
• Padding: Empty placeholder to extend the header to end up on 32-bit boundary.

Figure C2
Proposed extensions in the IP header. Data packet example

The different fields are as follows:

• Control word: Holds control bits which are used as packet type identifiers (1-
hello, 2-control, 4-data, 8-acknowledgement, 16-looped bit, 32-raise
temperature, 64-send me Q (SMQ), 128-SMQ acknowledgement). The control
word determines the remaining options as well. The following three options are
valid for ordinary data packets only. Figure C3, Figure C4, Figure C5, Figure C6
and Figure C7 indicates the option field of acknowledgement, hello, raise
temperature, send me Q and send me Q acknowledgement packets respectively.

• Timestamp: When the packet header is stored on routers, this filed is applied to
hold the storage time.

• From identifier: the identifier of the link where the packet has come from.
• To identifier: the identifier of the link where the packet has sent to.

 112

Figure C3
Option part of acknowledgement packets

The meaning of extra options is as follows:

• Control code: The same as in the case of data packets.
• Q-value: The floating point representation of the estimated Q-value21.

Figure C4
Option part of hello packets

Note that in the case of hello packet there is no need for extra information introduced in
the extended data packet format, only the control code is required. The same applies for
raise temperature packets and SMQ packets as well.

Figure C5
Option part of raise temperature packets

Figure C6
Option part of send me Q (SMQ) packets

21 Estimated by the neighbor.

 113

Figure C7
Option part of SMQ acknowledgement packets.

 114

Appendix D

The Flow-shop Schedule-evaluation Function

Let processing machines be denoted by A and B, jobs by njjj ,...,, 21 . Let the job

sequence be the same on both machines, i.e. pipeline processing. Processing times of
the individual jobs on machines A and B are denoted by nAAA ,...,, 21 , and nBBB ,...,, 21

respectively. Let nXXX ,...,, 21 denote off-machining. The reason why off-machining

times exist is that job jk+1 cannot start on machine A, since job jk has not finished (jobs
may not be interrupted), and similarly job jk cannot start on machine B since it has not
finished on machine A. Gantt-chart illustration is shown in Figure D1.

Figure D1
Gantt-chart of two-machine in flow-shop scheduling. Job sequence j1, j2, j3, j4 is

assumed

Off machining times can be computed by the following equation:

∑ ∑ ∑
=

−

=

−

=

−−=
k

j

k

j

k

j
jjjk XBAX

1

1

1

1

1

),0max(.

(D1)

The total off-machining time is, therefore, given by

∑ ∑ ∑ ∑∑
= =

−

=

−

==

−−==
n

k

k

j

k

j

k

j
jjj

n

k
k XBAXX

1 1

1

1

1

11

),0max(.

(D2)

and computed by the algorithm shown in Figure D2.

 115

Note that equation D2 does not involve any off-machining times on machine A. An
improved version of the model is when there are also two processing units, for the
future consistency, B and C, and there are off-machining times on both of them denoted
by nXXX ,...,, 21 and nYYY ,...,, 21 , on machines B and C respectively. Equations D1 and

D2 are then modified

∑ ∑ ∑∑
=

−

=

−

==

−−+=
k

j

k

j

k

j
jj

k

j
jjk YCXBY

1

1

1

1

11

),0max(,

(D3)

and

∑ ∑ ∑ ∑∑∑
= =

−

=

−

===

−−+==
n

k

k

j

k

j

k

j
jj

k

j
jj

n

k
k YCXBYY

1 1

1

1

1

111

),0max(.

(D4)

Gantt-chart corresponding to the new layout is shown in Figure D3. An algorithm that
computes the sum of off-machining times is shown in Figure D4.

Figure D2
Computation of off-machining times for two-machine flow-shop scheduling

Figure D3
Gantt-chart of two-machine flow-shop scheduling with initial off-machining times

input: Ai, Bi, i=1..n
output: Xsum
function two_machine_task([A1..An],[B1..Bn])
begin
 A:=A1; B:=B1; X:=A1; Xsum:=X;
 for i=2 to n do
 A:=A+Ai;
 X:=max(0,A-B-Xsum);
 Xsum:=Xsum+X;
 B:=B+Bi;
 end
end

 116

Figure D4
Computation of off-machining times on two-machine flow-shop scheduling with initial

off-machining times on the first equipment

When the two tasks are joined together, i.e. scheduling in Figure D1 and Figure D3, the
resulting task is a three-machine scheduling with off-machining times on the second and
the third machines only. Note that off-machining times on the third machine directly
depend only on off-machining times as well as machining times on the second
equipment, so when values of Xi have been computed Yi can be done as well. Figure D5
illustrates the three-machine layout; Figure D6 gives formal algorithmic description to
compute off-machining times for the 3-machine task.

Figure D5
Three-machine flow-shop scheduling task with off-machining times occurring on

machines B and C

Since there are repetitions in the core of the cycle, the algorithm can be extended to
arbitrary number of jobs and machines. By induction and rearrangement of operations it
is shown that algorithm in Figure D7 computes off-machining times for n jobs and m
machines.

input: Bi, Ci, Xi, i=1..n
output: Ysum
function two_machine_extended_task([A1..An],[B1..Bn],[X1..Xn])
begin
 B:=B1; C:=C1; X:=X1; Y:=B1+X1; Ysum:=Y;
 for i=2 to n do
 B:=B+Bi;
 X:=X+Xi;
 Y:=max(0,B+X-C-Ysum);
 Ysum:=Ysum+Y;
 C:=C+Ci;
 end
end

 117

The data structures take a more compact form:
Matrix M stores machining times on different machines for different jobs, where
machines are indexed by mi ,...,2,1= and jobs by nj ,...,2,1= .

Matrix D has the same dimensional properties as M has and is used for storing off
machining times during computation. It indicates how much the off-machining time is
on machine i before starting job j.

Figure D6
Computation of off-machining times having three machines and off-machining times on

the second and the third one

Property D1: For all machines the sum of off-machining times can be computed by:

∑
=

=
n

j

jiDid
1

),()(.

(D5)

Property D2: It is reasonable to accept that the first machine does not produce any off-
machining, so

0),1(=jD , for nj ,...,2,1= . (D6)

Machining times measured on individual processors are summed up in vector s. Since
any algorithm that uses off-machining time evaluation may set up arbitrary job
sequence, it is reasonable to address matrices not directly, but through a permutation
vector that stores a certain job sequence. The job permutation vector is denoted by p
and it stores a possible permutation of n,...,2,1 .

In some cases there are already-running jobs on the other machines when the first job
starts to execute on the first machine. The expected finish times of these initial
operations may influence the rest of the schedule, thus, they need to be built into the

input: Ai, Bi, Ci, i=1..n
output: Xsum, Ysum
function three_machine([A1..An],[B1..Bn],[C1..Cn])
begin
 A:=A1; B:=B1; C:=C1; X:=A1; Y:=A1+B1;
 Xsum:=X; Ysum:=Y;
 for i=2 to n do
 A:=A+Ai;
 X:=max(0,A-B-Xsum);
 Xsum:=Xsum+X;
 B:=B+Bi;
 Y:=max(0,B+Xsum-C-Ysum);
 Ysum:=Ysum+Y;
 C:=C+Ci;
 end
end

 118

model. The expected initial processing time on a single machine appears as a boundary
condition, and is denoted by b for the whole machine set. If it is smaller than the
accumulated initial waiting time on a particular machine, it is simply subtracted from
the corresponding initial off-machining time value. If it is larger, it delays the schedule
on that machine; the if- then rule indicates this special case.

Figure D7
Algorithm to compute off-machining times to arbitrary number of machines and jobs

Property D3: The computation cost of the algorithm is as follows:

)()1())1)(1((nmOmnmOmmnnmO ≈++=+−−++ . (D7)

<

input: M(m,n), p(n), b(m);
output: v;
storage: d(n), D(m,n), g(m);
function n_machine (M,p,b)
begin
 v:=0;
 for i:=1 to m do
 g(i):=b(i)-v;
 s(i):=M(i,p(1));
 d(i):=max(0, -g(i));
 D(i,1):=d(i);
 if g(i)<0 then g(i):=0;
 v:=v+M(i,p(1));
 end
 for j:=1 to n do D(1,j):=0;
 for j:=2 to n do
 for i:=1 to m do
 s(i):=s(i)+M(i,p(j));
 D(i+1,j):=max(0,s(i)+d(i)-s(i+1)-d(i+1));
 d(i+1):=d(i+1)+D(i+1,j);
 end
 s(m):=s(m) +M(i,p(j));
 end
 v:=0;
 for i:=1 to m do v:=v+d(i);
end

 119

Appendix E

Structure of the CD-ROM

The structure of the CD-ROM appendix can be found in Figure E1.

Figure E1
Structure of the CD-ROM appendix

The README.txt file contains further information about the software as well as the
documents located on the disk.

DOC
 |-Dissertation.pdf
 |-Dissertation.doc
 |-Theses.pdf
 \-Theses.doc
CHAPTER3
 |-Boltzmann_annealing
 |-Variable_temperature_bounds
 \-Figures
CHAPTER4
 |-Routing_simulator
 |-Routing_analyzator
 \-Figures
CHAPTER5
 |-Static_comparison
 \-Dynamic_architecture
README.txt

