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PREFACE

The present thesis aims to conduct some studies of the maximum (supremum) operator
on:

i.) σ-algebras, i.e. to define on σ-algebras functions which map the union into the
maximum under certain restrictions opening the door to the characterization of mapping
bijectively σ-algebras onto power sets,

ii.) the set of measurable functions with various characterizations
The material is presented essentially in seven chapters almost all of which begin with

an introductory part. In the first some historical backgrounds are presented. Chapters
II–V deal essentially with results in connection with optimal measure which is a function,
continuous from above and suitably normalized, mapping any given σ-algebra into the
interval such that every finite union is mapped into a maximum. We point out that
the choice of the term optimal measure is deliberate, since taking the maximum also
encounters the meaning given in the Oxford Dictionary to the world “optimal”. Chapter
V I treats some maximal inequalities regarding random variables. In the last chapter we
present some applications.
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CHAPTER I

HISTORICAL BACKGROUNDS

Notations.
* N denotes the set of positive integers.
* R denotes the set of real numbers.
* R+ denotes the set of non-negative real numbers.
* χ (B) stands for the characteristic function of the set B.
* |B| designates the cardinality of the set B.
*

∨
and ∨ (respectively,

∧
and ∧) stand for the maximum (respectively the minimum)

operator.
* P := P<∞ ∪ P∞ will denote the set of all optimal measures defined on measurable

space (Ω, F), with both Ω and F being infinite sets, where P<∞ (resp. P∞) denotes the
set of all optimal measures whose generating systems are finite (resp. countably infinite).

* For every A ∈ F , we write A for the complement of A.
* A ⊂ B means set A is a proper subset of set B.
* A ⊆ B means set A is a subset of set B.
* The power set of set A will be denoted by P (A) or 2A.

1.1 About the convergence of function sequences

Augustin Louis Cauchy in 1821 published a faulty proof of the false statement that the
pointwise limit of a sequence of continuous functions is always continuous. Joseph Fourier
and Niels Henrik Abel found counter examples in the context of Fourier series. Dirichlet
then analyzed Cauchy’s proof and found the mistake: the notion of pointwise convergence
had to be replaced by uniform convergence.
The concept of uniform convergence was probably first used by Christoph Gudermann.
Later his pupil Karl Weierstrass coined the term gleichmäßig konvergent (German: uni-
form convergence) which he used in his 1841 paper Zur Theorie der Potenzreihen, pub-
lished in 1894. Independently a similar concept was used by Philipp Ludwig von Seidel
and George Gabriel Stokes but without having any major impact on further develop-
ment. G. H. Hardy compares the three definitions in his paper Sir George Stokes and the
concept of uniform convergence and remarks: Weierstrass’s discovery was the earliest,
and he alone fully realized its far-reaching importance as one of the fundamental ideas of
analysis. For more materials about these facts we refer to [63] or
http://en.wikipedia.org/wiki/Uniform convergence.

Ever since many other types of convergence have been brought to light. We can
list some few of them: discrete and equal convergence introduced by Á. Császár and
M. Laczkovich in 1975 (cf. [27, 28, 29]), topologically speaking the weak and strong
convergence, the latest being at the origin of the so-called Banach spaces, which are very
broad and interesting classes of functions, indeed.
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1.2 Outer measure

The question ”Can we assign to a subset B of R a measure of its length?” had been of
great importance. The answer to this problem lies in measure theory, a subject that was
pioneered by Lebesgue, Borel and others at the beginning of the 20th century and which
proved to have an immense impact on modern analysis and probability theory, as well as
on many other areas of mathematics.

Definition 1.2.1 An outer measure is an extended real-valued set function µ∗ having the
following properties:

i.) The domain of definition of µ∗ consists of all the subsets of a set X 6= ∅.

ii.) µ∗ is non-negative.

iii.) µ∗ is countably subadditive, i.e.

µ∗ (
⋃∞

n=1An) ≤ ∑∞
n=1µ

∗ (An)

whenever (An) is a sequence of subsets of X.

iv.) µ∗ is monotone.

v.) µ∗ (∅) = 0.

Definition 1.2.2 Given an outer measure µ∗, we say that a set E is µ∗-measurable if
µ∗ (A) = µ∗ (A ∩ E) + µ∗ (A\E) for any subset A ⊂ X.

The (vague) motivation for Definition 1.2.2 is that the sets we want to single out as
µ∗-measurable should be such that µ∗ will be additive on them.

Theorem 1.2.1 Let µ∗ be an outer measure and denote by A the class of all µ∗-measurable
sets of a set X 6= ∅. Then

i.) X ∈ A.

ii.) B ∈ A whenever B ∈ A (where B denotes the complement of set B).

iii.) (Bn) ⊂ A, then
⋃∞

n=1Bn ∈ A.

Moreover, if µ denotes the restriction of µ∗ to A, then

iv.) µ (∅) = 0, µ (B) ≥ 0 whenever B ∈ A,

v.) µ (
⋃∞

n=1Bn) =
∑∞

n=1µ (Bn) for every sequence (Bn) ⊂ A whose members are pair-
wise disjoint, in this case µ is commonly reported to be σ-additive.

Every collection A of sets meeting properties (i)–(iii) is called σ-algebra and every set
function µ satisfying properties (iv) and (v) is referred to as measure.

2



1.3 Construction of outer measures

Let K be a class of subsets of a set X 6= ∅. We call K a sequential covering class (of X)
if:

i.) ∅ ∈ K.

ii.) For every set A there is a sequence (Bn) ⊂ K such that A ⊂ ⋃∞
n=1Bn.

For example the bounded open intervals on the real line form a sequential covering
class of R.

Let λ be an extended real-valued, non-negative set function, with domain K, such that
λ (∅) = 0. For each subset A of X let

µ∗ (A) = inf

{ ∞∑
n=1

λ (Bn) : (Bn) ⊂ K, A ⊂ ⋃∞
n=1Bn

}
(1)

Theorem 1.3.1 For any sequential covering class K and for any non-negative, extended
real-valued set function λ with domain K and λ (∅) = 0, the set function µ∗ defined by
(1) is an outer measure.

1.4 Completion of measures

A measure µ with domain A is said to be complete if for any two sets N , E the following
holds: If N ⊂ E, E ∈ A and µ (E) = 0, then N ∈ A.

Note that the measure constructed in Theorem 1.2.1 is complete.

Theorem 1.4.1 Let µ be a measure on a σ-algebra A and let A denote the class of all
sets of the form E ∪N , where E ∈ A and N is any subset of a set of A of measure zero.
Then A is a σ-algebra and the set function µ defined by µ (E ∪N) = µ (E) is a complete
measure on A.

1.5 Lebesgue measures

Denote by Rn the Euclidean space of n dimensions. The points of Rn are written in the
form x = (x1, . . . , xn). By an open interval we shall mean a set of the form

Ia, b := {x = (x1, . . . , xn) : ai < xi < bi for i = 1, . . . , n}
where a = (a1, . . . , an) and b = (b1, . . . , bn) ∈ Rn.

The set K of all open intervals forms a sequential covering class of Rn. Let λ be given
by λ (∅) = 0 and λ (Ia, b) =

∏n
j=1 (bj − aj), if a 6= b. The outer measure determined by the

pair K, λ (in accordance with Theorem 1.3.1) is called the Lebesgue outer measure. The
complete measure determined by this outer measure (in accordance with Theorem 1.2.1)
is called the Lebesgue measure. The measurable sets are called the Lebesgue-measurable
sets.

If the axiom of choice is agreed upon, then the following important result is a valid
argument.

3



Theorem 1.5.1 (cf. P. R. Halmos, [37]) There exists a set on the real line that is not
Lebesgue-measurable.

1.6 Notion of abstract measure and probability the-

ories

Definition 1.6.1 A collection F of subsets of a set Ω 6= ∅ is called σ-algebra if:

i.) A ∈ F whenever A ∈ F .

ii.)
⋃∞

n=1An ∈ F whenever (An) ⊂ F .

The pair (Ω, F) is then referred to as a measurable space and every member of F is
called a measurable set.

The triple (Ω, F , µ) is called a measure space if (Ω, F) is a measurable space and
the function µ : F → [0, ∞) is a measure, in the sense that µ meets the following two
properties:

1.) µ (∅) = 0.

2.) µ (
⋃∞

n=1An) =
∑∞

n=1µ (An) whenever (An) ⊂ F is a sequence of pairwise disjoint
measurable sets.

By a measurable function defined on the measurable space (Ω, F), we mean a function
f : Ω → R for which (f < b) ∈ F for all b ∈ R.

Two measurable functions f and g are said to be equal almost everywhere if µ (f 6= g) =
0. This is manifestly an equivalence relation, and we remind that if f is a measurable
function, then it is let to coincide with the induced equivalence class.

We note that various types of convergence (for instance the pointwise) of sequences of
measurable functions are widely treated in the literature.

The basic notion of modern probability theory, pioneered by the Russian Mathemati-
cian A. N. Kolmogorov, is an adaptation, in a sense, of measure theory. This idea proved
to be very genius, since many other probabilistic theories, such as the theory of stochastic
processes, martingale theory, mathematical statistics and so on have been brought to light.
Though probability theory is derived from analysis there are specific notions that cannot
be treated by means of analysis: the notion of independence, conditional probability and
conditional expectation, which is guaranteed by the Radon-Nikodym theorem. One of the
areas of interest of the present candidate is martingale theory. What exactly martingale
is? Before reminding this definition let us first refresh our mind over the conditional
expectation (cf. [53]).

Definition 1.6.2 Let X be a random variable with finite expectation on a probability
space (Ω, F , P ) and S ⊂ F a sub-σ-algebra. The conditional expectation of X given S,
is a random variable to be denoted by E (X|S), such that E (X|S) is an S-measurable
function and E (χAE (X|S)) = E (XχA) for every A ∈ S.

4



Definition 1.6.3 Let (Ω, F , P ) be a probability space and (Fn) ⊂ F an increasing se-
quence of σ-algebras. The pair (Xn, Fn), n ∈ N, is referred to as a submartingale if for
every n ∈ N the following conditions hold simultaneously :

a.) EXn < ∞,

b.) Xn is Fn-measurable,

c.) E (Xn+1|Fn) ≥ Xn with probability one. Whenever the inequality in (c) is reversed
we then speak of supermartingale.

If (Xn, Fn), n ∈ N, is both a submartingale and a supermartingale, then we speak of
martingale (cf. [52]).

J. L. Doob is actually the initiator of martingale theory. Perhaps, we should remind
one of the most fundamental results he obtained, called Doob’s maximal inequality (cf.
[52]):

Theorem 1.6.1 (Doob’s inequality) Let (Xn, Fn), n ∈ N, be a non-negative sub-
martingale. Then for every number x > 0, we have

xP (X∗
n ≥ x) ≤ EXnχ (X∗

n ≥ x) ,

where X∗
n :=

n∨
k=1

Xk.

1.7 Maxitive or possibility measures and integra-

tion operators

In another imitation of measure and Lebesgue integral, the so-called maxitive measure
and a corresponding integral were introduced by N. Shilkret (cf. [62]). This led to the
birth of the theory of fuzzy set.

Definition 1.7.1 Let R be a σ-ring of subsets of an arbitrary set Ω. An extended non-
negative real valued function m on R is called a maxitive measure if m (∅) = 0 and

m

(⋃
i∈I

Ei

)
= sup

i∈I
m (Ei)

for any collection of pairwise disjoint sets {Ei : i ∈ I} ⊂ R, where I denotes an arbitrary
countable index set.

The functional
∫

f := supb≥0 bm (f ≥ b) was defined to replace the Lebesgue integral,
accordingly.

In [67, 64, 55] the notions of fuzzy sets as well as pseudo-additive and fuzzy measures
were initiated as follows.

5



Definition 1.7.2 Let (Ω, F) be measurable space. A set function µ : F → [0, 1] is said
to be a fuzzy measure if and only if the conditions here below hold :

(F1) The identity µ (∅) = 0 holds.

(F2) Whenever A, B ∈ F and A ⊂ B, then µ (A) ≤ µ (B).

(F3) Whenever (An) ⊂ F and An ↑ A, then µ (An) ↑ µ (A).

(F4) Whenever (An) ⊂ F and Bn ↓ B, then µ (Bn) ↓ µ (B).

A fuzzy integral of a measurable function h : Ω → [0, 1] is defined by

(S)

∫
hdµ := sup

x∈[0, 1]

min {x, µ ({ω : h (ω) > x})}

and is often called the Sugeno integral.
We need to notice that fuzzy measure is a generalization of both probability and

optimal measures, because they meet the above four axioms.
At times fuzzy measure is defined by the collection of the following axioms:

Definition 1.7.3 Let (Ω, F) be measurable space. A set function µ : F → [0, 1] is said
to be a fuzzy measure if and only if the conditions here below are met simultaneously:

(S1) The identity µ (∅) = 0 holds.

(S2) If A, B ∈ F and A ⊂ B =⇒ µ (A) ≤ µ (B).

(S3) If A, B ∈ F and A ∩B = ∅, then µ (A ∪B) = max {µ (A) , µ (B)}.
(S4) If (An) ⊂ F and An ↑ A, then µ (An) ↑ µ (A).

In fact, we should note that this form of fuzzy measure inspired the candidate in laying
down the theory of optimal measure.

6



CHAPTER II

OPTIMAL MEASURES AND THE STRUCTURE

THEOREM

2.1 Introduction

This section can be seen at the beginning of the work [5].

Definition 2.1.1 A set function p : F → [0, 1] will be called optimal measure if it satisfies
the following three axioms:

Axiom 1. p (Ω) = 1 and p (∅) = 0.

Axiom 2. p (B ∪ E) = p (B) ∨ p (E) for all measurable sets B and E.

Axiom 3. p is continuous from above, i.e. whenever (En) ⊂ F is a decreasing sequence,

then p

( ∞⋂
n=1

En

)
= limn→∞ p (En) =

∞∧
n=1

p (En).

The triple (Ω, F , p) will be referred to as an optimal measure space. For all measurable
sets B and C with B ⊂ C, the identity

p (C\B) = p (C)− p (B) + min {p (C\B) , p (B)} (2)

holds, and especially for all B ∈ F ,

p
(
B

)
= 1− p (B) + min

{
p (B) , p

(
B

)}
.

In fact, it is obvious (via Axiom 2.1) that,

p (B) + p (C\B) = max {p (C\B) , p (B)}+ min {p (C\B) , p (B)}
= p (C) + min {p (C\B) , p (B)} .

Lemma 2.1.1 Let (Bn) ⊂ F be any sequence tending increasingly to a measurable set
B, and p an optimal measure. Then limn→∞ p (Bn) = p (B).

Proof. The lemma will be proved if we show that for some n0 ∈ N, the identity
p (B) = p (Bn) holds true whenever n ≥ n0. Assume that for every n ∈ N, p (B) 6= p (Bn),
which is equivalent to p (Bn) < p (B), for all n ∈ N. This inequality, however, implies
that p (B) = p (B\Bn) for each n ∈ N. But since sequence (B\Bn) tends decreasingly to
∅, we must have that p (B) = 0, a contradiction which proves the lemma.

It is clear that every optimal measure p is monotonic and σ-subadditive. We would
like to mention that the following example is essentially due to M. Laczkovich.

7



Example 2.1.1 Let (Ω, F) be a measurable space, (ωn) ⊂ Ω be a fixed sequence, and
(αn) ⊂ [0, 1] a given sequence tending decreasingly to zero. The function p : F → [0, 1],
defined by

p (B) = max {αn : ωn ∈ B} (3)

is an optimal measure.
Moreover, if Ω = [0, 1] and F is a σ-algebra of [0, 1] containing the Borel sets, then every
optimal measure defined on F can be obtained as in (3).

Proof of the moreover part. We first prove that if B ∈ F and p (B) = c > 0, then
there is an x ∈ B which satisfies p ({x}) = c. To do this let us show that there exists a
nested sequence of intervals I0 ⊃ I1 ⊃ I2 ⊃ . . . such that |In| = 2−n and p (B ∩ In) = c,
for every n ∈ N∪{0}. In fact, let I0 = [0, 1]. If In has been defined then let In = E ∪H,
where E and H are non-overlapping intervals with |E| = |H| = 2−n−1. Obviously, we may
choose In+1 = E or H. By the continuity from above we have p (

⋂∞
n=1 (B ∩ In)) = c > 0.

In particular, B ∩ (
⋂∞

n=1In) 6= ∅. This implies that B ∩ (
⋂∞

n=1In) = {x} and p ({x}) = c.
Fix c > 0. Then the set {x : p ({x}) ≥ c} is finite. Assume in the contrary that there is
an infinite sequence (xk) ⊂ [0, 1] such that p ({xk}) ≥ c, k ∈ N. Thus denoting Bk =
{xk, xk+1, . . .}, it is clear that

⋂∞
k=1Bk = ∅; but this contradicts the fact that p (Bk) ≥ c.

Consequently, the set En = {x : p ({x}) ≥ n−1} is finite for all n ∈ N. Hence there is a
sequence (xn) ⊂ [0, 1] such that p ({xn}) ↓ 0 (as n →∞) and every point x ∈ [0, 1] with
p ({x}) ≥ 0 is contained in (xn). Therefore, for all B ∈ F , p (B) = max {αn : xn ∈ B}
which is just the above optimal measure.

Example 2.1.2 Let (Ω, F) be a measurable space. Clearly, if a function p0 : F → {0, 1}
is a σ-additive measure, then p0 (B ∪ C) = p0 (B) + p0 (C) = max {p0 (B) , p0 (C)} for all
B and C ∈ F . Hence p0 is an optimal measure. One can easily show that p0 is the only
set function which is at the same time a σ-additive and optimal measure.

Remark 2.1.1 The collection M = {B ∈ F : p (B) < p (Ω)} is a σ-ideal, whenever p is
an optimal measure.

2.2 The structure of optimal measures

To begin with, we note that the present section is entirely composed on the basis of paper
[6].

By a p-atom we mean a measurable set H, p (H) > 0 such that whenever B ∈ F and
B ⊂ H, then p (B) = p (H) or p (B) = 0.

Definition 2.2.1 (Agbeko, [6]) A p-atom H is decomposable if there exists a subatom
B ⊂ H such that p (B) = p (H) = p (H\B). If no such subatom exists, we shall say that
H is indecomposable.

Lemma 2.2.1 (Agbeko, [6]) Any atom H can be expressed as the union of finitely
many disjoint indecomposable subatoms of the same optimal measure as H.

8



Proof. We say that a measurable set E is good if it an be expressed as the union
of finitely many disjoint indecomposable subatoms. Let H be an atom and suppose that
H is not good. Then H is decomposable. Set H = B1 ∪ C1, where B1 and C1 are
disjoint measurable sets with p (B1) = p (C1) = p (H). Since H is not good, at least
one of the two measurable sets B1 and C1 is not good; suppose, e.g. that B1 is not
good. Then B1 is decomposable. Write B1 = B2 ∪ C2, where B2 and C2 are disjoint
measurable sets with p (B2) = p (C2) = p (H). Continuing this process for every n ∈ N
we obtain two measurable sets Bn and Cn such that the Cn’s are pairwise disjoint with
p (Cn) = p (H). This, however, is impossible since En =

⋃∞
k=nCk tends decreasingly to

the empty set and hence, by Axiom 2.1, p (En) → p (∅) as n → ∞, which contradicts
that p (En) ≥ p (Cn) = p (H) > 0, n ∈ N.

An immediate consequent of Lemma 2.2.1 is as follows.

Remark 2.2.1 Let H be any indecomposable p-atom and E any measurable set, with
p (E) > 0. Then, either p (H) = p (H\E) and p (H ∩ E) = 0, or p (H) = p (H ∩ E) and
p (H\E) = 0.

The Structure Theorem 1 (Agbeko, [6]) Let (Ω, F , p) be an optimal measure space.
Then there exists a collection H (p) = {Hn : n ∈ J} of disjoint indecomposable p-atoms,
where J is some countable (i.e. finite or countably infinite) index set, such that for every
measurable set B ∈ F with p (B) > 0 we have

p (B) = max {p (B ∩Hn) : n ∈ J} . (4)

Moreover, if J is countably infinite, then the only limit point of the set {p (Hn) : n ∈ J}
is 0.

(Before we tackle the proof, let us state the following results.)

Lemma 2.2.2 Let E ∈ F be with p (E) > 0, and Bk ∈ F , Bk ⊂ E (k ∈ J), where J is
any countable index set. Then

p
(⋃

k∈JBk

)
< p (E) (5)

if and only if
p (Bk) < p (E) (6)

for all k ∈ J .

Proof. The lemma is obvious if the index set J is finite. Without loss of generality
we may assume that J = N. Suppose that (6) holds for all k ∈ N. Put Ck =

⋃k
j=1Bj,

k ∈ N. It is evident that (Ck) ⊂ F , is an increasing sequence and the inequality

p (Ck) < p (E) (7)

holds for all k ∈ N. Assume that p (E) = p (
⋃∞

k=1Ck). Then via (7) we obtain that

p (E) = p (Ek), where Ek :=
(⋃∞

j=1Cj

)
\Ck, k ∈ N. This, however, is impossible, since

the sequence (Ek) ⊂ F tends decreasingly to the empty set and thus, by Axioms 2.1 and
2.1, p (Ek) → 0, as k → ∞. Hence inequality (5) holds. To end the proof, we just note
that the converse is obvious.
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Lemma 2.2.3 For every sequence (Bn) ⊂ F and every optimal measure p we have

p

( ∞⋃
n=1

Bn

)
= max {p (Bn) : n ∈ N} .

The proof is omitted since it immediate from Lemma 2.2.2.

Lemma 2.2.4 Every measurable set E ∈ F with p (E) > 0 contains an atom H ⊂ E
such that p (E) = p (H).

Proof. If E is an atom, there is nothing to be proved. We may assume that E is not
an atom. Let the set U ⊂ F be given:
i. if B ∈ U , then B ⊂ E and 0 < p (B) < p (E),
ii. if B, C ∈ U and B 6= C, then B ∩ C = ∅.
Clearly, the collection of all such U , denoted by C, is partially ordered by the set inclusion.
It is also obvious that every subset of C has an upper bound. Therefore, by the Zorn
lemma, it follows that C contains a maximal element, which we shall denote by U∗. For
any fixed constant δ ∈ (0, 1), let us show that the set

{B ∈ U∗ : p (B) > δ}

is finite. In fact, suppose that the contrary holds. Then there exists a sequence (Bn) ⊂
U∗ which satisfies the inequality p (Bn) > δ for each index n ∈ N. But since the

sequence En =
∞⋃

j=n

Bj, n ∈ N, tends decreasingly to the empty set, we must have

that p (En) → 0, as n → ∞. This, however, contradicts the inequality p (En) =
max {p (Bj) : j = n, n + 1, . . .} > δ, n ∈ N. Hence U∗ = {Bk : k ∈ ∆} with p (Bk) <
p (E) for all k ∈ ∆, where ∆ is a countable index set. By Lemma 2.2.2, it follows that

p
(⋃

k∈∆Bk

)
< p (E) .

Thus it is obvious that H = E\⋃k∈∆Bk is an atom with p (H) = p (E). This completes
the proof of the lemma.

Lemma 2.2.5 Let H = {Hn : n ∈ J} be as above. Then for every measurable set B ∈ F
with p (B) > 0, the identity(6.4)

p
(
B\⋃n∈J (B ∩Hn)

)
= 0 (8)

holds.

Proof. Assume that the left side of (8) were positive. Then set B\⋃n∈J (B ∩Hn)
would contain an atom K such that K ∩ Kn = ∅ for every Kn ∈ G∗. This, however,
would contradict the maximality of G∗, which ends the proof.

We are now in the position to prove the Structure Theorem.
Proof of the Structure Theorem. Let G be a set of pairwise disjoint atoms. It

is clear that the collection of all such G, denoted by Γ, is partially ordered by the set
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inclusion and every subset of Γ has an upper bound. Then, the Zorn lemma entails that
Γ contains a maximal element, which we shall denote by G∗. As we have done above, one
can easily verify that the set

{
K ∈ G∗ : p (K) > n−1

}

is finite. Hence G∗ = {Kj : j ∈ ∇}, where ∇ is a countable index set. It is obvious that
p (Kj) → 0 as j → ∞, whenever ∇ is a countably infinite set. Consequently, it ensues,
via Lemma 2.2.1, that each atom Kj ∈ G∗ can be expressed as the union of finitely many
disjoint indecomposable subatoms of the same optimal measure as Kj. Finally, let us
list these indecomposable atoms occurring in the decompositions of the elements of G∗ as
follows: H = {Hn : n ∈ J}, where J is a countable index set. Now, via Lemma 2.2.3, the
identity (8) and Axiom 2.1, one can easily observe that (4) holds for every set B ∈ F ,
with p (B) > 0. It is also obvious that 0 is the only limit point of the set {p (Hn) : n ∈ J}
whenever J is a countably infinite set. This ends the proof of the theorem.

Definition 2.2.2 The set H (p) = {Hn : n ∈ J} of disjoint indecomposable p-atoms (ob-
tained in Theorem 1) will be called p-generating countable system:
i) it will be referred to as a p-generating infinite system and denoted by H∞ (p) if J is
countably infinite;
ii) it will be called a p-generating finite system and denoted by H<∞ (p) if J is finite.

To end this chapter we need to point out that, as the reader has already noticed it,
we intensively made use of the Zorn lemma which we know is equivalent to the axiom of
choice. In [34] an elementary proof was given to the structure theorem.
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CHAPTER III

CHARACTERIZATION OF SOME PROPERTIES

OF MEASURABLE SETS

3.1 Introduction

Some new information about σ-algebras is investigated, consisting of mapping bijectively
σ-algebras onto power sets. Such σ-algebras, in fact, form a rather broad class. A special
grouping of the optimal measures is used in our investigation. We constructively provide a
bijective mapping that will do. In the proof we first characterize the usual set operations,
the set inclusion relation as well as some asymptotic behaviors of sequences of measurable
sets. Without loss of generality we shall restrict ourselves to infinite σ-algebras, since the
opposite case can be easily done.

3.2 Mapping bijectively σ-algebras onto power sets

We note that this entire section is drafted from article [8].

Definition 3.2.1 (Agbeko, [8]) We say that an optimal measure p∗ ∈ P∞ is of order-
one if there is a unique indecomposable p∗-atom H such that p∗ (H) = 1. (Any such atom
will be referred to as an order-one-atom and the set of all order-one optimal measures will

be denoted by P̃1∞.)

Example 3.2.1 Fix a sequence (ωn) ⊂ Ω and define p∗0 ∈ P∞ by

p∗0 (B) = max

{
1

n
: ωn ∈ B

}
.

Then p∗0 ∈ P̃1∞.

Proof. In fact, via the Structure Theorem, there is an indecomposable p∗0-atom H
such that p∗0 (H) = 1. This is possible if and only if ω1 ∈ H. We note that there is no
other indecomposable p∗0-atom H∗ with H∗ ∩ H = ∅ such that p∗0 (H∗) = 1, otherwise
necessarily it would ensue that ω1 ∈ H∗, which is absurd. Therefore, we can conclude

that p∗0 ∈ P̃1∞.

Further notations

If H is the order-one-atom of some p∗ ∈ P̃1∞, we write p =
{

q∗ ∈ P̃1∞ : q∗ (H) = 1
}

.

We then refer to the elements of the class p as representing members of the class, and call
H the unitary atom of the class.

We further denote by P1
∞ the set of all p classes.
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If A is a nonempty measurable set and p ∈ P1
∞, the identity p (A) = 1 (resp. the

inequality p (A) < 1) will simply mean that p∗ (A) = 1 (resp. p∗ (A) < 1) for any
representing member p∗ ∈ p. We shall also write p (A) = 0 to mean that p∗ (A) = 0
whenever p∗ ∈ p.

Write O for the set of all unitary atoms on the measurable space (Ω, F).

Lemma 3.2.1 Let A,B ∈ F and p ∈ P1
∞ be arbitrary. In order that p (A ∩B) = 1 it is

necessary and sufficient that p (A) = 1 and p (B) = 1.

Proof. As the necessity is obvious, we only need show the sufficiency. In fact, assume
that p (A) = 1 and p (B) = 1. Let H be the unitary atom of class p, and let p∗ denote an
arbitrary but fixed representing member in the class. Thus H is an order-one-atom for p∗.
Then p∗ (H) = 1. Clearly, p∗ (A ∩H) = 1 and p∗ (B ∩H) = 1. Hence p∗

(
A ∩H ∩B

)
=

0. It is enough to prove that both identities p∗
(
A ∩H ∩B

)
= 0 and p∗

(
A ∩H ∩B

)
= 0

are valid. In the contrary, assume that at least one of these identities fails to hold:
p∗

(
A ∩H ∩B

)
= 0, say. Then p∗

(
A ∩H ∩B

)
= 1. Now, since p∗ (H ∩B) = 1, it

ensues that either p∗ (A ∩H ∩B) = 1 or p∗
(
A ∩H ∩B

)
= 1. Then combining each

of these last identities with p∗
(
A ∩H ∩B

)
= 1, we have that p∗

(
A ∩H ∩B

)
= 1 and

p∗ (A ∩H ∩B) = 1, or p∗
(
A ∩H ∩B

)
= 1 and p∗

(
A ∩H ∩B

)
= 1. This violates that

H is an order-one-atom (because the sets A ∩ H ∩ B, A ∩ H ∩ B and A ∩ H ∩ B are
pairwise disjoint).

Remark 3.2.1 Let p ∈ P1
∞ be arbitrary. Then the identity p (∅) = 0 holds (cf. Axiom

2.1).

Remark 3.2.2 Let A ∈ F and p ∈ P1
∞ be arbitrary. Then the identities p (A) = 1 and

p
(
A

)
= 1 cannot hold simultaneously, i.e. for no representing member p∗ of class p the

identities p∗ (A) = 1 and p∗
(
A

)
= 1 hold at the same time.

In fact, assume the contrary. Then Lemma 3.2.1 would imply that

1 = p (A) = p
(
A

)
= p

(
A ∩ A

)
= p (∅) = 0

which is absurd, indeed.

Definition 3.2.2 (Agbeko, [8]) For any A ∈ F let the set ∆ (A) be described by

1. ∆ (A) ⊆ P1
∞.

2. If p ∈ ∆ (A), then p (A) = 1.

Remark 3.2.3 Let A ∈ F . Then ∆ (A) = ∅ if and only if A = ∅.
Remark 3.2.4 If H is the unitary atom of a class p ∈ P1

∞, then ∆ (H) = {p}.
Let A ∈ F and denote by OA the set of all unitary atoms H such that p (A) = 1, where

∆ (H) = {p}. It is clear that OA ∩ OA = ∅ and OA ∪ OA = O. From this observation the
following lemma is straightforward.
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Lemma 3.2.2 For every set A ∈ F , we have that ∆
(
A

)
= ∆ (A).

Proposition 3.2.1 Let A,B ∈ F be arbitrary. Then

1. ∆ (Ω) = P1
∞.

2. ∆ (A ∩B) = ∆ (A) ∩∆ (B).

3. ∆ (A ∪B) = ∆ (A) ∪∆ (B).

Proof. Part 1 is an easy task. Let us show Part 2. In fact, let p ∈ ∆ (A ∩B). Then
p (A ∩B) = 1. Hence Lemma 3.2.1 implies that p (A) = 1 and p (B) = 1, so that p ∈
∆ (A) and p ∈ ∆ (B), i.e. p ∈ ∆ (A)∩∆ (B). Consequently, ∆ (A ∩B) ⊆ ∆ (A)∩∆ (B).
To show the reverse inclusion, pick an arbitrary p ∈ ∆ (A) ∩ ∆ (B). Then p (A) = 1
and p (B) = 1. Via Lemma 3.2.1, we have that p (A ∩B) = 1, i.e. p ∈ ∆ (A ∩B). So
∆ (A) ∩∆ (B) ⊆ ∆ (A ∩B).

To end the proof, let us show the third part. In fact, let A and B ∈ F be arbitrary.
Then making use of the second part of this proposition it ensues that ∆

(
A ∩B

)
=

∆
(
A

) ∩∆
(
B

)
. By applying Lemma 3.2.2 and the De Morgan identities, we obtain that

∆ (A ∪B) = ∆ (A ∪B) = ∆
(
A ∩B

)
= ∆

(
A

) ∩∆
(
B

)

= ∆
(
A

) ∪∆
(
B

)
= ∆ (A) ∪∆ (B) = ∆ (A) ∪∆ (B) .

This was to be proven.

Lemma 3.2.3 Let A and B ∈ F be arbitrary nonempty sets. In order that A ⊂ B, it is
necessary and sufficient that ∆ (A) ⊂ ∆ (B).

Proof. As the necessity is trivial we need only show the sufficiency. In fact, assume
that A\B is not an empty set. Then because of Remark 3.2.3, ∆ (A\B) is neither empty.
Fix some p ∈ ∆ (A\B), i.e. p (A\B) = 1. This implies that p (B) < 1. Otherwise we
would obtain via Lemma 3.2.1 that 1 = p ((A\B) ∩B) = p (∅) = 0, which is absurd.
Then p (A) = 1 and p (B) < 1, i.e. p ∈ ∆ (A) \∆ (B). So the set ∆ (A) \∆ (B) is not
empty.

Lemma 3.2.4 Let A and B ∈ F be arbitrary nonempty sets. Then for the equality
A ∩B = ∅ to hold it is necessary and sufficient that ∆ (A) ∩∆ (B) = ∅.

(The proof follows from Proposition 3.2.1/2 and Remark 3.2.3.)

Lemma 3.2.5 Let A and B ∈ F be arbitrary nonempty sets. In order that A = B it is
necessary and sufficient that ∆ (A) = ∆ (B).

Proof. As the necessity is trivial we need only show the sufficiency. In fact, assume
that A and B ∈ F are such that ∆ (A) = ∆ (B), i.e. ∆ (A) ⊆ ∆ (B) and ∆ (B) ⊆ ∆ (A).
By applying twice Lemma 3.2.3 it ensues that A ⊆ B and B ⊆ A. Therefore, A = B.
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Lemma 3.2.6 Let A and B ∈ F be any nonempty sets. Then ∆ (A\B) = ∆ (A) \∆ (B).

Proof. The conjunction of Proposition 3.2.1/2 and Lemma 3.2.2 entails that

∆ (A\B) = ∆
(
A ∩B

)
= ∆ (A) ∩∆

(
B

)

= ∆ (A) ∩
(
∆ (B)

)
= ∆ (A) \∆ (B) ,

which completes the proof.

Proposition 3.2.2 Let (An) ⊂ F and A ∈ F be arbitrary. Then (An) converges decreas-
ingly to A if, and only if (∆ (An)) converges decreasingly to ∆ (A).

Proof. Assume that (An) converges decreasingly to A. Then by applying repeatedly
Lemma 3.2.3 we have for every n ∈ N that

∆ (A) ⊂ ∆ (An+1) ⊂ ∆ (An) .

We need to prove that ∆ (A) =
∞⋂

n=1

∆ (An). To do this it will be enough to show that

∆ (A) ⊆
∞⋂

n=1

∆ (An) and
∞⋂

n=1

∆ (An) ⊆ ∆ (A). In fact, we note that the first inclusion is

trivial. To prove the second inclusion let us pick some p ∈
∞⋂

n=1

∆ (An). Then p ∈ ∆ (An)

for all n ∈ N. Hence p (An) = 1 for all n ∈ N. If we fix any representing member p∗ in
class p we then obtain via Axiom 2.1 that

p∗ (A) = p∗
( ∞⋂

n=1

An

)
= min {p∗ (An) : n ∈ N} = 1,

implying that p (A) = 1, i.e. p ∈ ∆ (A). Consequently,
∞⋂

n=1

∆ (An) ⊆ ∆ (A).

Conversely, assume that sequence (∆ (An)) converges decreasingly to ∆ (A). Then for
every n ∈ N we obtain that ∆ (A) ⊂ ∆ (An+1) ⊂ ∆ (An) so that A ⊂ An+1 ⊂ An, n ∈ N
(by Lemma 3.2.3). Hence A ⊆

∞⋂
n=1

An. To show the reverse inclusion let us assume that

set

( ∞⋂
n=1

An

)
\A is not empty. Then via Remark 3.2.3 and Axiom 2.1 there can be found

some p ∈ P1
∞ such that

1 = p∗
(( ∞⋂

n=1

An

)
\A

)
= p∗

( ∞⋂
n=1

An ∩ A

)
= min

{
p∗

(
An ∩ A

)
: n ∈ N}

,

for every representing member p∗ of class p, since (An) is a decreasing sequence. Con-
sequently, 1 = p∗

(
An ∩ A

)
for all n ∈ N. Hence Lemma 3.2.2 yields that p

(
A

)
= 1

and p (An) = 1 for all n ∈ N. But then p ∈ ∆ (An) for all n ∈ N and hence

p ∈
∞⋂

n=1

∆ (An) = ∆ (A). Nevertheless, this is absurd since p ∈ ∆
(
A

)
= ∆ (A). We

can thus conclude on the validity of the proposition.
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Proposition 3.2.3 Let (An) ⊂ F and A ∈ F be arbitrary. Then (An) converges increas-
ingly to A if and only if (∆ (An)) converges increasingly to ∆ (A).

Proof. Assume that (An) converges increasingly to A. Then by applying repeatedly
Lemma 3.2.3 we have for every n ∈ N that

∆ (An) ⊂ ∆ (An+1) ⊂ ∆ (A) .

We need to prove that ∆ (A) =
∞⋃

n=1

∆ (An). To do this it will be enough to show that

∆ (A) ⊆
∞⋃

n=1

∆ (An) and
∞⋃

n=1

∆ (An) ⊆ ∆ (A). In fact, we note that the second inclusion

is trivial. To prove the first one let us pick an arbitrary class p ∈ ∆ (A) and fix any
representing member p∗ of the class p. Following the proof of Lemma 0.1 (cf. [5], page

134), there can be found a positive integer n0 such that 1 = p∗ (A) = p∗
( ∞⋃

k=1

Ak

)
=

p∗ (An), whenever n ≥ n0. Hence p ∈
∞⋃

n=n0

∆ (An) ⊆
∞⋃

n=1

∆ (An), i.e.

∆ (A) ⊆
∞⋃

n=n0

∆ (An) ⊆
∞⋃

n=1

∆ (An) .

Conversely, assume that sequence (∆ (An)) converges increasingly to ∆ (A). Then se-

quence
(
∆ (An)

)
converges decreasingly to ∆ (A). Consequently, Lemma 3.2.2 entails

that sequence
(
∆

(
An

))
converges decreasingly to ∆

(
A

)
. Taking into account Proposi-

tion 3.2.2, sequence
(
An

)
must converge decreasingly to A. In turn this implies that (An)

converges increasingly to A.
Therefore, we can conclude on the validity of the argument.

Theorem 3.2.1 (Agbeko, [8]) Let (An) ⊂ F and A ∈ F be arbitrary. In order that
(An) converge to A it is necessary and sufficient that (∆ (An)) converge to ∆ (A).

Proof. For every counting number n ∈ N write En =
∞⋂

k=n

Ak and Bn =
∞⋃

k=n

Ak. It is

clear that sequence (Bn) converges decreasingly to lim sup
n→∞

An and sequence (En) converges

increasingly to lim inf
n→∞

An. Consequently, by applying Propositions 3.2.2 and 3.2.3 to these

sequences we can conclude on the validity of the theorem.

Definition 3.2.3 (Agbeko, [8]) A mapping ∆ : F → P (P1
∞) is said to be powering if

it is defined by:

∆ (A) =

{ ∅ if A = ∅
{p ∈ P1

∞ : p (A) = 1} if A 6= ∅
The following result can easily be derived from Lemma 3.2.5 and Remark 3.2.3.

Proposition 3.2.4 If ∆ : F → P (P1
∞) is a powering mapping, then it is an injection.
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Definition 3.2.4 If Γ ⊆ P1
∞ is a nonempty set, then the collection C of all the unitary

atoms of the classes p ∈ Γ will be called unitary-atomic (or governing-atomic) collection
of Γ.

The Postulate of Powering. If Γ ∈ P (P1
∞) \ {∅} and C denotes the governing-atomic

collection of Γ, then
⋃ C is measurable and ∆ (

⋃ C) ⊆ Γ.

Theorem 3.2.2 (Agbeko, [8]) The powering mapping ∆ : F → P (P1
∞) is surjective if

and only if the postulate of powering is valid.

Proof. Assume that the postulate of powering is valid. Let Γ ∈ P (P1
∞) be arbitrarily

fixed. We note that if Γ = ∅, then there is nothing to be proven. Suppose that Γ is a
nonempty subset of P1

∞, and denote by C its corresponding governing-atomic collection.
Then

⋃C is measurable and ∆ (
⋃ C) ⊆ Γ (by the postulate). Let us show that Γ ⊆

∆ (
⋃ C). In fact, pick any class p ∈ Γ and p∗ any representing member of p, with H the

unitary atom of p. Since H ⊆ ⋃ C, it ensues from Lemma 3.2.2 that ∆ (H) ⊆ ∆ (
⋃ C).

But, via Remark 3.2.4 we have that {p} = ∆ (H) and thus p ∈ ∆ (
⋃ C), i.e. Γ ⊆ ∆ (

⋃ C).
Therefore, Γ = ∆ (

⋃ C).
To prove the converse of the biconditional, let us assume that the powering mapping ∆

is a surjection. We note consequently that ∆ is a bijection, since it is also an injection (by
Proposition 3.2.4 ). Let Γ ∈ P (P1

∞) \ {∅} be arbitrary and write C for the corresponding
unitary-atomic collection. Obviously, we have that Γ =

⋃ {∆ (H) : H ∈ C} is a subset of
P1
∞. Then via the bijective property it ensues that ∆−1 (Γ) ∈ F . Clearly, ∆ (H) ⊂ Γ for

every H ∈ C. By Lemma 3.2.3 together with the bijective property, we obtain that

H = ∆−1 (∆ (H)) ⊂ ∆−1 (Γ)

whenever H ∈ C. Consequently, the inclusion
⋃ C ⊆ ∆−1 (Γ) follows. Now, let us show

that if ω ∈ ∆−1 (Γ), then there is some H ∈ C such that ω ∈ H. Assume in the contrary
that there can be found some ω1 ∈ ∆−1 (Γ) such that ω1 /∈ H for all H ∈ C. We can thus
define an optimal measure q∗ : F → [0, 1] so that

q∗ (B)

{
= 1 if ω1 ∈ B
< 1 if ω1 /∈ B,

see Example 3.2.1. Then there is a unique indecomposable q∗-atom (to be denoted by H̃)

such that q∗
(
H̃

)
= 1. Obviously, ω1 ∈ H̃ and q∗ (∆−1 (Γ)) = 1. We further note that

⋃
{∆ (H) : H ∈ C} = Γ = ∆

(
∆−1 (Γ)

)
=

{
p ∈ P1

∞ : p
(
∆−1 (Γ)

)
= 1

}
.

From this fact and the identity q∗ (∆−1 (Γ)) = 1, there must exist some class p0 ∈ P1
∞

with p0 (∆−1 (Γ)) = 1, such that q∗
(
H̃ ∩H0 ∩∆−1 (Γ)

)
= 1, where H0 ∈ C is the unitary

atom of class p0. Nevertheless, this is possible only if ω1 ∈ H0, which is absurd, since
earlier we have supposed that ω1 /∈ H for all H ∈ C. Therefore, if ω ∈ ∆−1 (Γ), then there
is some H ∈ C such that ω ∈ H. It ensues that ω ∈ ⋃ C for all ω ∈ ∆−1 (Γ), as H ⊂ ⋃ C
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whenever H ∈ C. Thus ∆−1 (Γ) ⊆ ⋃ C. Therefore,
⋃ C = ∆−1 (Γ), which leads to the

postulate.
Theorem 3.2.2 entails that an infinite σ-algebra is equinumerous with a power set if

and only if Postulate 3.2 is valid. This suggests that every infinite σ-algebra is either
equinumerous with an infinite power set or with a non-power set.
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CHAPTER IV

SOME BASIC RESULTS OF OPTIMAL

MEASURES RELATED TO MEASURABLE

FUNCTIONS

4.1 Introduction

In comparison with the mathematical expectation, we shall define a non-linear functional
(first for non-negative measurable simple functions and secondly for non-negative mea-
surable functions) which can provide us with many well-known results in measure theory.
Their proofs are carried out similarly.

4.2 Optimal average

In the whole section we shall be dealing with an arbitrary but fixed optimal measure space
(Ω, F , p).

Let

s =
n∑

i=1

biχ (Bi)

be an arbitrary non-negative measurable simple function, where
{Bi : i = 1, . . . , n} ⊂ F is a partition of Ω. Then the so-called optimal average of s is
defined by

Definition 4.2.1 The quantity \
Ω

sdp :=
n∨

i=1

bip (Bi)

will be called optimal average of s, and for E ∈ F\
B

sχ (E) dp :=
n∨

i=1

bip (E ∩Bi)

as the optimal average of s on E, where χ (E) is the indicator function of the measurable
set E. These quantities will be sometimes denoted respectively by I (s) and IE (s).

It is well-known that in general a measurable simple function has many decompo-
sitions. The question thus arises whether or not the optimal average depends on the
decomposition of the simple function. The following result gives a satisfactory answer to
this question.
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Theorem 4.2.1 Let
n∑

i=1

biχ (Bi) and
m∑

k=1

ckχ (Ck)

be two decompositions of a measurable simple function s ≥ 0, where {Bi : i = 1, . . . , n}
and {Ck : k = 1, . . . , m} ⊂ F are partitions of Ω. Then

max {bip (Bi) : i = 1, . . . , n} = max {ckp (Ck) : k = 1, . . . , m} .

Proof. Since Bi =
m⋃

k=1

(Bi ∩ Ck) and Ck =
n⋃

i=1

(Bi ∩ Ck), Axiom 2.1 of optimal mea-

sure implies that

p (Bi) = max {p (Bi ∩ Ck) : k = 1, . . . , m} and p (Ck) = max {p (Bi ∩ Ck) : i = 1, . . . , n}

Thus

max {ckp (Ck) : k = 1, . . . , m} = max {max {ckp (Bi ∩ Ck) : i = 1, . . . , n} : k = 1, . . . , m}

and

max {bip (Bi) : i = 1, . . . , n} = max {max {bip (Bi ∩ Ck) : k = 1, . . . , m} : i = 1, . . . , n} .

Clearly, if Bi ∩ Ck 6= ∅, then bi = ck, or if Bi ∩ Ck = ∅, then p (Bi ∩ Ck) = 0. Thus, by
the associativity and the commutativity, we obtain

max {bip (Bi) : i = 1, . . . , n} = max {ckp (Ck) : k = 1, . . . , m} .

This completes the proof.

Theorem 4.2.2 Let s and s denote two non-negative measurable simple functions, b ∈
[0, ∞] and B ∈ F be arbitrary. Then we have:

1. I (b1) = b.

2. I (χ (B)) = p (B).

3. I (bs) = bI (s).

4. IB (s) = 0 if p (B) = 0.

5. I (s) = IB (s) if p
(
B

)
= 0.

6. I (s) ≤ I (s) if s ≤ s on Ω.

7. I (s + s) ≤ I (s) + I (s).

8. IB (s) = limn→∞ IBn (s) whenever (Bn) ⊂ F tends increasingly to B.

9. I (s ∨ s) = max {I (s) , I (s)}.
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The proof is omitted because it is based on computation only.

Proposition 4.2.1 Let f ≥ 0 be any bounded measurable function. Then

sup
s≤f

\
Ω

sdp = inf
s≥f

\
Ω

sdp,

where s and s denote non-negative measurable simple functions.

Proof. Let f be a measurable function such that 0 ≤ f ≤ b on Ω, where b is some con-
stant. Let Ek = (kbn−1 ≤ f ≤ (k + 1) bn−1), k = 1, . . . , n. Clearly, {Ek : k = 1, . . . , n} ⊂
F is a partition of Ω. Define the following measurable simple functions:

sn = bn−1

n∑

k=0

kχ (Ek) , sn = bn−1

n∑

k=0

(k + 1) χ (Ek) .

Obviously, sn ≤ f ≤ sn. Then we can easily observe that

sup
s≤f

\
Ω

sdp ≥
\

Ω

sndp = n−1b max {kp (Ek) : k = 0, . . . , n}

and

inf
s≥f

\
Ω

sdp ≤
\

Ω

sndp = n−1b max {(k + 1) p (Ek) : k = 0, . . . , n} .

Hence

0 ≤ inf
s≥f

\
Ω

sdp− sup
s≤f

\
Ω

sdp ≤ bn−1.

The result follows by letting n →∞ in this last inequality.

Definition 4.2.2 (Agbeko, [5]) The optimal average of a measurable function f is de-

fined by

\
Ω

|f | dp = sup

\
Ω

sdp, where the supremum is taken over all measurable simple

functions s ≥ 0 for which s ≤ |f |. The optimal average of f on any given measurable set

E is defined by

\
E

|f | dp =

\
Ω

χ (E) |f | dp.

For convenience reasons at times we shall write A |f | for the optimal average of the
measurable function f .

Proposition 4.2.2 (Agbeko, [5]) Let f ≥ 0 and g ≥ 0 be any measurable simple func-
tions, b ∈ R+ and B ∈ F be arbitrary. Then

1. A (b1) = b.

2. A (χ (B)) = p (B).

3. A (bf) = bAf .
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4. A (fχ (B)) = 0 if p (B) = 0.

5. Af ≤ Ag if f ≤ g.

6. A (f + g) ≤ Af + Ag.

7. A (fχ (B)) = Af if p
(
B

)
= 0.

8. A (max {f, g}) = max {Af, Ag}.

The almost everywhere notion in measure theory also makes sense in optimal measure
theory.

Definition 4.2.3 Let p be an optimal measure. A property is said to hold almost every-
where if the set of elements where it fails to hold is a set of optimal measure zero.

As an immediate consequent of the atomic structural behavior of optimal measures
we can formulate the following.

Remark 4.2.1 (Agbeko, [6]) If a function f : Ω → R is measurable, then it is constant
almost everywhere on every indecomposable atom.

Proposition 4.2.3 (Agbeko, [6]) Let p ∈ P and f be any measurable function. Then

\
Ω

|f | dp = sup




\
Hn

|f | dp : n ∈ J



 ,

where H (p) = {Hn : n ∈ J} is a p-generating countable system.

Moreover if A |f | < ∞, then

\
Ω

|f | dp = sup {cn · p (Hn) : n ∈ J}, where cn = f (ω) for

almost all ω ∈ Hn, n ∈ J .

Proposition 4.2.4 (Optimal Markov inequality) Let f ≥ 0 be any measurable func-
tion. Then for every number x > 0 we have

xp (f ≥ x) ≤ Af.

Proposition 4.2.5 Let f ≥ 0 be any measurable function and b > 0 be any number.

1. If Af < ∞, then f < ∞ almost everywhere.

2. Af = 0 if and only if f = 0 almost everywhere.

3. If Af < ∞, then f < ∞ almost everywhere.

4. If Af < ∞ and 1
p(E)

\
E

fdp ≥ b for all E ∈ F with p (E) > 0, then f ≥ b almost

everywhere
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5. If Af < ∞ and 1
p(E)

\
E

fdp ≤ b for all E ∈ F with p (E) > 0, then f ≤ b almost

everywhere.

Proposition 4.2.6 Let f ≥ 0 be any bounded measurable function. Then for every ε > 0

there is some δ > 0 such that

\
B

fdp < ε whenever B ∈ F , p (B) < δ.

Proof. By assumption 0 ≤ f ≤ b for some number b > 0. Then Proposition 4.2.2

entails, for the choice 0 < δ < εb−1, that

\
B

fdp ≤ bp (B) < δb < ε.

In the example below we shall show that Proposition 4.2.6 does not hold for unbounded
measurable functions.

Example 4.2.1 Consider the measurable space (N, F), where F is the power set of N.

Define the set function p : F → [0, 1] by p (B) =
1

min B
. It is not difficult to see that

p is an optimal measure. Consider the following measurable function f (ω) = ω, ω ∈ N.

Clearly, Af ≥ 1. Let s =
n∑

j=1

bjχ (Bj) be a measurable simple function with 0 ≤ s ≤ f .

Denote ωj = min Bj for j = 1, . . . , n. Then p (Bj) =
1

ωj

and bj ≤ ωj for all j = 1, . . . , n.

Thus I (s) ≤ 1, and hence Af ≤ 1. Consequently, Af = 1. On the one hand, there is no

δ > 0 such that p (E) < δ implies that

\
E

fdp < 1. Indeed,

\
{ω}

fdp = 1 for every ω ∈ N,

and p ({ω}) → 0 as ω →∞.

4.3 The Radon-Nikodym’s type theorem

Definition 4.3.1 (Agbeko, [6]) By a quasi-optimal measure we a set function q : F →
R+ satisfying Axioms 2.1-2.1, with the hypothesis q (Ω) = 1 in Axiom 2.1 being replaced
by the hypothesis 0 < q (Ω) < ∞.

Proposition 4.3.1 If f ≥ 0 is a bounded measurable function, then the set function
qf : F → R+,

qf (E) =

\
E

fdp,

is a quasi-optimal measure.

Definition 4.3.2 We shall say that a quasi-optimal measure q is absolutely continuous
relative to p (abbreviated q ¿ p) if q (B) = 0 whenever p (B) = 0, B ∈ F .

Proposition 4.3.2 Let q be a quasi-optimal measure. Then q ¿ p if and only if for
every ε > 0 there is some δ > 0 such that q (B) < ε whenever p (B) < δ, B ∈ F .

The proof of Proposition 4.3.2 is similarly done as in the case of measure theory.

23



Lemma 4.3.1 Let q be a quasi-optimal measure and H (p) be a p-generating system. If
q ¿ p, then

H (q) = {H ∈ H (p) : q (H) > 0}
is a q-generating system.

Proof. Let H be an indecomposable p-atom. Suppose that there exists a measurable
set E ⊂ H with q (E) = q (H\E) = q (H) > 0. Since q ¿ p, it must ensue that p (E) > 0
and p (H\E) > 0, contradicting the fact that H is an indecomposable p-atom. Hence we
can conclude that every indecomposable p-atom is also H be an indecomposable q-atom
whenever q (H) > 0 and observe that

H (q) = {H ∈ H (p) : q (H) > 0} = {Hk ∈ H (p) : k ∈ J∗} ,

where J∗ ⊆ J is an index set.
Let B be any measurable set with q (B) > 0. Then, via Lemma 2.2.5 and the absolute

continuity property it follows that

q

(
B\

⋃

k∈J∗
(B ∩Hk)

)
= 0.

Thus q (B) = max {q (B ∩Hk) : k ∈ J∗}.
If J∗ is a countably infinite set, then Proposition 4.3.2 yields that q (Hk) becomes

arbitrarily small along with p (Hk) as k →∞. This ends the proof.

Remark 4.3.1 Let p, q ∈ P ,H (p) = {Hn : n ∈ J} be a p-generating countable system
and f any measurable function. Suppose that q ¿ p and q (H) ≤ p (H) for every H ∈
H (p) . Then

\
Ω

|f | dq ≤
\

Ω

|f | dp, provided that

\
Ω

|f | dp < ∞.

This remark is immediate from Lemma 4.3.1 and Proposition 4.2.3.

Theorem 4.3.1 (Optimal Radon-Nikodym) Let q be a quasi-optimal measure such
that q ¿ p. Then there exists a unique measurable function f ≥ 0 such that for every
measurable set B ∈ F ,

q (B) =

\
B

fdp.

This measurable function, explicitly given in (9), will be called Optimal Radon-

Nikodym derivative and denoted by
dq

dp
.

Proof. Let H (p) = {Hn : n ∈ J} be a p-generating countable system. Define the
following non-negative measurable function

f = max

{
q (Hn)

p (Hn)
· χ (Hn) : n ∈ J

}
. (9)
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Fix an index n ∈ J and let B ∈ F , p (B) > 0. Then Remark 2.2.1 and the absolute
continuity property imply that

q (Hn)

p (Hn)
p (B ∩Hn) =

{
0 if p (B ∩Hn) = 0
q (B ∩Hn) , otherwise.

Hence, by a simple calculation, one can observe that\
B

fdp = max {q (B ∩Hn) : n ∈ J} .

Consequently, Lemma 4.3.1 yields\
B

fdp =

{
max {q (B ∩Hn) : q (Hn) > 0, n ∈ J} if q (B) > 0
0, otherwise,

and thus (9) holds.
Let us show that the decomposition (9) is unique. In fact, there exist two measurable

functions f ≥ 0 and g ≥ 0 satisfying(9). Then for each set B ∈ F , we have:\
B

fdp =

\
B

gdp.

Put E1 = (f < g) and E2 = (g < f). Obviously, E1 and E2 ∈ F . If the inequality
p (E1) > 0 should hold, it would follow that\

E1

gdp =

\
E1

fdp <

\
E1

gdp,

which is impossible. This contradiction yields p (E1) = 0. We can similarly show that
p (E2) = 0. These last two equalities imply that p (f 6= g) = 0, i.e. the decomposition (9)
is unique. The theorem is thus proved.

Let E ∈ F be arbitrarily fixed with p (E) > 0. Consider the set function p∗ : F →
[0, 1] , defined by

p∗ (B) =
p (B ∩ E)

p (E)

. Clearly, p∗ is an optimal measure and p∗ ¿ p. It is evident that

dp∗

dp
=

χ (E)

p (E)
· p

almost everywhere (by the optimal Radon-Nikodym theorem).

Definition 4.3.3 The above set function p∗ (B) will be called conditional optimal measure
of B given E, and will be denoted by p (B|E).
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Definition 4.3.4 Let f be any measurable function with A |f | < ∞ and E ∈ F , with
p (E) > 0. The conditional optimal average of f given E is defined by

Ap (|f | |E) :=

\
E

|f | dp∗.

Lemma 4.3.2 Let f be any measurable function with A |f | < ∞ and E ∈ F , with p (E) >
0. Then

Ap (|f | |E) :=
1

p (E)

\
E

|f | dp.

4.4 The Fubini’s type theorem

Let (Ωi, Fi, pi), i = 1, 2, be two optimal measure spaces and let us denote the smallest
σ-algebra containing F1 × F2 by S := σ (F1 ×F2). For each ωi ∈ Ωi (i = 1, 2), we
define ω1 cross-section and ω2 cross-section by Eω1 = {ω ∈ Ω2 : (ω1, ω) ∈ E} and Eω2 =
{ω ∈ Ω1 : (ω, ω2) ∈ E}, where E ∈ S.

Definition 4.4.1 Let f be any measurable function defined on (Ω1 × Ω2, S). For each
ω1 ∈ Ω1 and ω2 ∈ Ω2, the functions

1. fω1 : Ω2 → R ∪ {−∞, ∞} defined by fω1 (ω2) = f (ω1, ω2) ,

respectively

2. fω2 : Ω1 → R ∪ {−∞, ∞} defined by fω2 (ω1) = f (ω1, ω2) ,

will be called ω1-section, respectively ω2-section of function f .

Theorem 4.4.1 For every E ∈ S, define the functions
mE : Ω1 → [0, ∞] by mE (ω1) = p2 (Eω1)
and
mE : Ω2 → [0, ∞] by mE (ω2) = p1 (Eω2).
Then

1. mE is F1-measurable.

2. mE is F2-measurable.

3.

\
Ω1

mEdp1 =

\
Ω2

mEdp2.

Furthermore, define the function p1 × p2 : S → [0, 1] by

p1 × p2 (E) =

\
Ω1

mEdp1 =

\
Ω2

mEdp2.

Then p1 × p2 is an optimal measure such that

p1 × p2 (B ×D) = p1 (B) · p2 (D) ,

for all B ∈ F1 and D ∈ F2.
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Proof. Let S denote the collection of all E ∈ S for which properties 1.–3. of the
theorem hold. It is enough to prove that S is a σ-algebra containing S. The proof is as
in the classical case (cf. [37]) except the following claim:

For all E1 and E2 ∈ S, E = E1 ∪ E2 ∈ S.
In fact, by definition and Axiom 2.1 we can easily observe that

mE (ω1) = max {mE1 (ω1) , mE2 (ω1)}
and

mE (ω2) = max
{
mE1 (ω2) , mE2 (ω2)

}
.

Thus\
Ω1

mEdp1 = max




\
Ω1

mE1dp1 ,

\
Ω1

mE2dp1



 = max




\
Ω2

mE1dp2 ,

\
Ω2

mE2dp2





=

\
Ω2

mEdp2.

Hence E = E1∪E2 ∈ S, since obviously mE (resp. mE) is -F1 (resp. -F2) measurable,
ending the proof.

Theorem 4.4.2 (Optimal Fubini) Let (Ω1, F1, p1) and (Ω2, F2, p2) be two optimal
measure spaces and let f : Ω1 × Ω2 → R ∪ {−∞, ∞} be any measurable function such

that

\
Ω1×Ω2

|f | dp < ∞. Then,

1. The ω1-section |fω1| : Ω2 → [0, ∞] is such that

\
Ω2

|fω1| dp2 < ∞ almost every-

where on Ω1. The function ϕ : Ω1 → [0, ∞], defined by ϕ (ω1) =

\
Ω2

|fω1| dp2, is

such that

\
Ω1

ϕdp1 < ∞.

2. The ω2-section |fω2| : Ω1 → [0, ∞] is such that

\
Ω1

|fω2| dp1 < ∞ almost every-

where on Ω2. The function ψ : Ω2 → [0, ∞], defined by ψ (ω2) =

\
Ω1

|fω2| dp1, is

such that

\
Ω2

ψdp2 < ∞.

3. Furthermore,\
Ω1×Ω2

|f | d (p1 × p2) =

\
Ω1



\
Ω2

|f | dp2


 dp1 =

\
Ω2



\
Ω1

|f | dp1


 dp2

We shall not prove the optimal Fubini theorem. Instead, we simply note that the
proof follows from Theorem 4.4.1 using the same techniques as in the proof of the original
Fubini theorem, cf. [37].
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CHAPTER V

CONVERGENCE THEOREMS RELATED TO

MEASURABLE FUNCTIONS

5.1 Introduction

Definition 5.1.1 Let X be an arbitrary nonempty set. We say that a sequence of real-
valued functions (hn) converges to a real-valued function h:

i. discretely if for every x ∈ X there exists a positive integer n0 (x) such that hn (x) =
h (x), whenever n > n0 (x);

ii. equally if there is a sequence (bn) of positive numbers tending to 0 and for every
x ∈ X there can be found an index n0 (x) such that |hn (x)− h (x)| < bn whenever
n > n0 (x).

(For more about these notions, cf. [27]-[29].)
In this section we shall characterize the discrete, equally, pointwise and uniformly

convergence theorems. We can say that the notions of the pointwise and uniformly con-
vergence is ancient.

5.2 Convergence with respect to individual optimal

measures

In the present section we shall be dealing with an arbitrarily fixed optimal measure space
(Ω, F , p), unless otherwise stated.

The following three results are the counterparts of the monotone convergence theorem,
the Fatou lemma and the dominated convergence theorem in measure theory.

Theorem 5.2.1 (Optimal monotone convergence)

1. If (fn) is an increasing sequence of non-negative measurable functions, then

lim
n→∞

\
Ω

fndp =

\
Ω

(
lim

n→∞
fn

)
dp.

2. If (gn) is a decreasing sequence of non-negative measurable functions with g1 ≤ b for
some b ∈ (0, ∞), then

lim
n→∞

\
Ω

gndp =

\
Ω

(
lim

n→∞
gn

)
dp.
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We shall here below give an example showing the reason why the optimal monotone
convergence theorem fails to hold for all decreasing sequences of measurable functions.

Example 5.2.1 Let (N, F , p) be the optimal measure space we considered in Example
4.2.1. Define the following measurable function

gn (ω) =

{
0 if ω < n
ω if ω ≥ n.

Obviously, (gn) tends decreasingly to zero as n → ∞. Let us show that Agn = 1 for all
n ∈ N. Obviously, Agn ≥ np ({n}) = 1. On the other hand, let 0 ≤ s ≤ gn where

s =
k∑

j=1

bjχ (Bj). Denote ωj = min Bj for j = 1, . . . , k. Then p (Bj) =
1

ωj

and bj ≤ ωj

for all j = 1, . . . , k. Hence inequality bjp (Bj) ≤ 1 holds for each index j = 1, . . . , k.
Consequently, I (s) ≤ 1, 0 ≤ s ≤ gn. Thus Agn ≤ 1 whenever n ∈ N.

Lemma 5.2.1 (Optimal Fatou) If (fn) and (hn) are sequences of non-negative mea-
surable functions, then for every optimal measure p, we have that

1.

\
Ω

(
lim inf
n→∞

fn

)
dp ≤ lim inf

n→∞

\
Ω

fndp;

2. lim sup
n→∞

\
Ω

hndp ≤
\

Ω

(
lim sup

n→∞
hn

)
dp, whenever (hn) is a uniformly bounded se-

quence.

Proof. To prove the first part, we point out by definition that

lim inf
n→∞

fn = max {min {fk : k ≥ n} : n ∈ N} .

Let f ∗n = min {fk : k ≥ n}, n ∈ N, and f = lim inf
n→∞

fn. Clearly, (f ∗n) is an increasing

sequence. The optimal monotone convergence theorem implies that

A
(
lim inf
n→∞

fn

)
≤ lim inf

n→∞
Afn.

To end the proof we note that the second part can be similarly verified.

Theorem 5.2.2 Let (fn) be a uniformly bounded sequence of non-negative measurable
functions. Then A (limn→∞ fn) = Af , where limn→∞ fn = f almost everywhere.

Proof. The optimal Fatou lemma via the assumption implies that

A
(
lim inf
n→∞

fn

)
≤ lim inf

n→∞
Afn ≤ lim sup

n→∞
Afn ≤ A

(
lim sup

n→∞
fn

)
.

By assumption f = lim inf
n→∞

fn = lim sup
n→∞

fn almost everywhere. Consequently,

Af ≤ lim inf
n→∞

Afn ≤ A

(
lim sup

n→∞
fn

)
≤ Af

meaning that limn→∞ Afn = Af . This was to be proven.
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Lemma 5.2.2 Let ω ∈ Ω be fixed. Then for every measurable function f , we have that
zf (pω) = |f (ω)|.

Proof. Let 0 ≤ s =
k∑

i=1

biχ (Bi) be a measurable simple function. Then it is obvious

that zs (pω) = s (ω). Let (sn) be a sequence of non-negative measurable simple functions
tending increasingly to |f |. Then by Theorem 5.2.1 it ensues that

zf (pω) = lim
n→∞

zsn (pω) = lim
n→∞

sn (ω) = |f (ω)|

which was to be proved.

5.3 Characterization of various types of convergence

for measurable functions

We say that a nonempty measurable set E is closely related to some sequence (ωn) ⊂ Ω if

|E ∩ {ωn : n ∈ N}| =
{ ∞, if |E| = ∞
|E| , if |E| < ∞,

that is, if E is infinite, then infinitely many members of the sequence belong to E, other-
wise all of its elements are members of the sequence.

Definition 5.3.1 Let E be closely related to a sequence (ωn) ⊂ Ω, and let (αn) ⊂ [0, 1] be
any fixed sequence tending decreasingly to 0. The optimal measure pE : F → [0, 1], defined
by pE (B) = max {αn : ωn ∈ B}, will be called 1st-type E-dependent optimal measure.

Theorem 5.3.1 (Agbeko, [7]) Let f and fn (n ∈ N) be any measurable functions. Then
(fn) tends to f uniformly if and only if (zn) tends to 0 uniformly on P∞, where zn (p) =\

Ω

|fn − f | dp with n ∈ N, p ∈ P∞.

Proof. Sufficiency. Suppose that (zn) tends to 0 uniformly. To prove the sufficiency
it is enough to show that for every number b > 0, there can be found some n0 (b) ∈ N
such that (|f − fn| ≥ b) = ∅ whenever n ≥ n0 (b) + 1. In fact, let us assume that the
contrary holds. Then for some b0 > 0 and all n0 ∈ N, there is an integer m > n0 such
that (|f − fm| ≥ b0) 6= ∅. Define

n1 = min {m > n1 : (|f − fm| ≥ b0) 6= ∅}

when n0 = 1. If nk has been selected, define

nk+1 = min {m > nk : (|f − fm| ≥ b0) 6= ∅}

when n0 = nk. It is clear that sequence (nk) tends increasingly to infinity alongside with
k, so that (|f − fnk

| ≥ b0) 6= ∅, k ∈ N. Then by assumption some nm ∈ {nk : k ∈ N }
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exists such that znk
(p) < b0, for all k ≥ m and p ∈ P∞. Now let Em =

∞⋃
k=m

Bnk
,

(where Bnk
= (|f − fnk

| ≥ b0), k ∈ N). Write Hnm = Bnm and for k ≥ m + 1, set

Hnk
=

(
k⋃

j=m

Bnj

)
\

(
k−1⋃
j=m

Bnj

)
. Clearly, H = {Hnk

: k ≥ m} is a sequence of pairwise

disjoint measurable sets with Em =
∞⋃

k=m

Hnk
. Fix a sequence (ωk) ∈ Ω so that ωk ∈ Hnk

whenever k ≥ m. Next, let p0 ∈ P∞ be a 1st-type Em-dependent optimal measure

defined by p0 (B) = nm · max
{

1
nk

: ωk ∈ B
}
. It is obvious that H is a p0-generating

system. Hence we have on one hand that znm (p0) < b0. Nevertheless on the other hand

we also obtain that znm (p0) ≥
\

Hnm

|fnm − f | dp0 ≥ b0, since p0 (Hnm) = 1. As these last

two inequalities contradict each other, the sufficiency is thus proved.
Necessity. Assume that fn → f uniformly, as n → ∞. Then for every b ∈ (0, ∞), there
is some n0 (b) ∈ N such that

(|fn − f | < b
2

)
= Ω whenever n > n0 (b). Consequently, for

every p ∈ P∞, it ensues that zn (p) ≤ b
2

< b, n > n0 (b). This completes the proof of the
theorem.

Lemma 5.3.1 Let f and fn (n ∈ N) be any measurable functions. If (fn) tends to f
pointwise (equally or discretely), then lim sup

n→∞
Bn = ∅, where Bn = (|fn − f | = ∞), n ∈ N.

Proof. It is enough to prove the lemma for the pointwise convergence, since the
proof of the remaining cases is similarly done. Assume that E := lim sup

n→∞
Bn 6= ∅. Let us

pick an arbitrary ω ∈ E. Then it is clair that lim sup
n→∞

|fn (ω)− f (ω)| = ∞ and hence

∞∧
n=k

∞∨
j=n

|fj (ω)− f (ω)| = ∞ for every k ∈ N. But since (fn) tends to f pointwise we must

have that for every constant b > 0 there is a positive integer m0 = m0 (b, ω) such that

|fn (ω)− f (ω)| < b whenever n > m0. Hence b ≥
∞∧

n=m0

∞∨
j=n

|fj (ω)− f (ω)| = ∞, which is

absurd, completing the proof.

Theorem 5.3.2 (Agbeko, [7]) Let (fn) be any sequence of measurable functions. Then
(fn) tends to a measurable function f pointwise if and only if (zn) tends to 0 pointwise
on P<∞, where for every n ∈ N, zn is defined on P<∞ by

zn (p) =

\
Ω

|fn − f | dp.

Proof. Sufficiency. Assume that for all b > 0 and p ∈ P<∞ there is a positive
integer n0 = n0 (b, p) such that zn (p) < b whenever n > n0. Then since for every fixed
ω ∈ Ω the ω-concentrated measure pω depends solely upon ω ∈ Ω, index n0 (b, pω) also
depends on ω. Hence via Lemma 5.2.2 we have for all n ≥ n0 (b, ω) = n0 (b, pω) that
|fn (ω)− f (ω)| = zn (pω) < b.
Necessity. Suppose that for all a > 0 and ω ∈ Ω, there can be found some positive integer
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m0 = m0 (a, ω) such that |fn (ω)− f (ω)| < a, whenever n ≥ m0. Assume further that
there is some b > 0 and some p ∈ P<∞ such that for every n ∈ N, there exists some m ≥ n
with the property that zn (p) ≥ b. Let H1, . . ., Hk be a p-generating system. Via Lemma
5.3.1, there is some n0 ∈ N, big enough so that fn − f is finite on Ω whenever n ≥ n0.

Then for every n ≥ n0, a measurable set A
(i)
n exists with A

(i)
n ⊂ Hi and p

(
A

(i)
n

)
= 0

such that fn− f is constant on Hi\A(i)
n , i = 1, . . . , k (because of Remark 4.2.1). Clearly,

p

(
∞⋃

j=n0

A
(i)
j

)
= 0, so that the identity p

(
Hi\

∞⋃
j=n0

A
(i)
j

)
= p (Hi) holds. Hence fn − f

is constant on Hi\
∞⋃

j=n0

A
(i)
j whenever i ∈ {1, . . . , k} and n ≥ n0. Fix ωi ∈ Hi\

∞⋃
j=n0

A
(i)
j ,

i ∈ {1, . . . , k}. Then by assumption there must be some positive integer k
(i)
0 = k0 (b, ωi)

such that |fn (ωi)− f (ωi)| < b, n > k
(i)
0 . Thus for all n ≥ k0 (where k0 =

k∨
i=1

k
(i)
0 ), we have

that
k∨

i=1

|fn (ωi)− f (ωi)| < b. Now write k∗ = max (k0, n0). Then some integer m > k∗

exists such that zm (p) ≥ b. Therefore, via Proposition 4.2.3 and Remark 4.2.1, we obtain
that

b ≤ zm (p) =
k∨

i=1

ci · p (Hi) ≤
k∨

i=1

ci =
k∨

i=1

|fm (ωi)− f (ωi)| < b

where for i ∈ {1, . . . , k}, ci = |fm (ω)− f (ω)| if ω ∈ Hi\
∞⋃

j=n0

A
(i)
j . However, this is

absurd, a contradiction which ends the proof of the theorem.

Theorem 5.3.3 (Agbeko, [7]) A sequence of measurable functions (fn) converges to
some measurable function f equally if and only if (zn) converges to 0 equally on P<∞,

where for every n ∈ N, zn is defined on P<∞ by zn (p) =

\
Ω

|fn − f | dp.

Proof. Necessity. Suppose that there exists a sequence (bn) ⊂ (0, ∞) tending to 0 and
for every ω ∈ Ω there can be found a positive integer n0 (ω) such that |fn (ω)− f (ω)| < bn

for all n ≥ n0 (ω). It is enough to show that the equal convergence of (zn) holds true for
this sequence (bn). In fact, assume that for this sequence (bn), there is some p ∈ P<∞
such that for all j ∈ N an integer m = m (p) > j can be found with the property that
zm (p) ≥ bm. Let H1, . . ., Hk be a p-generating system. Via Lemma 5.3.1, there is some
n0 ∈ N, big enough so that fn − f is finite on Ω whenever n ≥ n0. Then for every

n ≥ n0, a measurable set A
(i)
n exists with A

(i)
n ⊂ Hi and p

(
A

(i)
n

)
= 0 such that fn − f is

constant on Hi\A(i)
n , i = 1, . . . , k. But as p

(
∞⋃

j=n0

A
(i)
j

)
= 0, we can easily observe that

p

(
Hi\

∞⋃
j=n0

A
(i)
j

)
= p (Hi), i ∈ {1, . . . , k}. Hence fn−f is constant on Hi\

∞⋃
j=n0

A
(i)
j for all

i ∈ {1, . . . , k} and n ≥ n0. Fix ωi ∈ Hi\
∞⋃

j=n0

A
(i)
j , i ∈ {1, . . . , k}. Then by assumption
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there must be some positive integer k
(i)
0 = k0 (ωi) such that |fn (ωi)− f (ωi)| < bn, n >

k
(i)
0 . Thus for all n ≥ k0 (where k0 =

k∨
i=1

k
(i)
0 ), we have that

k∨
i=1

|fn (ωi)− f (ωi)| < bn.

Consequently, we have on one hand that zm (p) ≥ bm. But on the other hand, Proposition
4.2.3 yields that

zm (p) =
k∨

i=1

ci · p (Hi) ≤
k∨

i=1

ci =
k∨

i=1

|fm (ωi)− f (ωi)| < bm

(where for i ∈ {1, . . . , k}, ci = |fm (ω)− f (ω)| if ω ∈ Hi\
∞⋃

j=n0

A
(i)
j ), meaning that

bm < bm, which is however absurd. This contradiction concludes the proof of the necessity.
Sufficiency. Assume that there is a sequence (bn) of positive numbers tending to 0 and for
every p ∈ P<∞ there exists a positive integer n0 (p) such that zn (p) < bn whenever n >
n0 (p). Then for each fixed ω ∈ Ω, Lemma 5.2.2 entails that |fn (ω)− f (ω)| = zn (pω) < bn

whenever n > n0 (pω) = n0 (ω). The sufficiency is thus proved, which completes the proof
of the theorem.

Theorem 5.3.4 (Agbeko, [7]) A sequence of measurable functions (fn) converges to
some measurable function f discretely if and only if (zn) converges to 0 discretely on

P<∞, where for every n ∈ N, zn is defined on P<∞ by zn (p) =

\
Ω

|fn − f | dp.

The proof for Theorem 5.3.4 is omitted because it can be carried out ”mutatis mu-
tandis” as done in Theorems 5.3.2 and 5.3.3.

Definition 5.3.2 A sequence of measurable functions (fn) is said to converge in optimal
measure to some measurable function f if limn→∞ p (|fn − f | ≥ ε) = 0 for every constant
ε > 0.

Theorem 5.3.5 (Agbeko, [5]) Let (fn) be a sequence of measurable functions (fn) which
converges in optimal measure to some measurable function f . Then there exists a subse-
quence (fnk

) which converges to f almost everywhere.

5.4 Characterization of various types of bounded-

ness

Remark 5.4.1 If (xn) is a sequence of real numbers such that lim sup
n→∞

|xn| < ∞, then for

each of its subsequences (xnk
) we have that lim sup

k→∞
|xnk

| < ∞.

Notice. For every fixed measurable function f , the mapping zf : P → [0, ∞], defined

by zf (p) =

\
Ω

|f | dp, is a function.

Lemma 5.4.1 Let ω ∈ Ω be fixed. Then for every measurable function f , we have that
zf (pω) = |f (ω)|.
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Proof. Let 0 ≤ s =
k∑

i=1

biχ (Bi) be a measurable simple function. Then it is obvious

that zs (pω) = s (ω). Let (sn) be a sequence of non-negative measurable simple functions
tending increasingly to |f |. Then by Theorem B it ensues that

zf (pω) = lim
n→∞

zsn (pω) = lim
n→∞

sn (ω) = |f (ω)|
which was to be proved.

Theorem 5.4.1 (Agbeko, [7]) Let f be any measurable function the following asser-
tions are equivalent.

1. f is bounded.

2. lim
x→∞

\
(|f |≥x)

|f | dp = 0 for all p ∈ P∞.

3. There exists a constant b > 0 such that

\
Ω

|f | dp 6= b for all p ∈ P∞.

The proof will be carried out in two steps. In Proposition 5.4.1 we shall show the
equivalence 1. ⇐⇒ 2. and then the equivalence e1. ⇐⇒ e3. in Proposition 5.4.2.

Proposition 5.4.1 A measurable function f is bounded if and only if

lim
x→∞

\
(|f |≥x)

|f | dp = 0

for all p ∈ P∞.

Proof. Suppose that f is bounded, and write b > 0 for its bound. Then for every

p ∈ P∞, we have that

\
(|f |≥x)

|f | dp ≤ b · p (|f | ≥ x) → 0, as x →∞.

Conversely, assume that lim
k→∞

\
(|f |≥k)

|f | dp = 0 for all p ∈ P∞, but for every n ∈ N we

have that (|f | ≥ n− 1) 6= ∅. It obviously ensues that

(|f | ≥ n− 1) \ (|f | ≥ n) = Hn 6= ∅
for infinitely many n ∈ N. Suppose without loss of generality that Hn 6= ∅, n ∈ N.
Further let (ωn) ⊂ Ω be such that ωn ∈ Hn for all n ∈ N. Define p ∈ P∞ by p (B) =
max

{
1
n

: ωn ∈ B
}
. Clearly, (Hn) is a generating system for p. Then by assumption it

follows that lim
k→∞

\
(|f |≥k)

|f | dp = 0. Now note that (|f | ≥ k) =
∞⋃

i=k+1

Hi for all k ∈ N.

Hence Proposition 4.3.2 entails that

\
(|f |≥k)

|f | dp = sup
i≥k+1

\
Hi

|f | dp. It is not difficult to

check that

\
Hi

|f | dp ≥ 1− 1

i
, i ≥ k+1. Consequently, it results that

\
(|f |≥k)

|f | dp ≥ 1−
1

k + 1
(k ∈ N), leading to 0 = lim

k→∞

\
(|f |≥k)

|f | dp ≥ 1, which is absurd. This contradiction

concludes on the validity of the sufficiency, ending the proof.
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Proposition 5.4.2 Let f be a finite measurable function. Then f is unbounded if and
only if for every constant c > 0, there exists some pc ∈ P∞ such that

zf (pc) = c. (10)

Proof. Necessity. Assume that f is unbounded measurable function. For every
n ∈ N, write En = (c · (n− 1) ≤ |f | < c · n), where c > 0 is an arbitrarily fixed constant.

Clearly, the members of the sequence (En) are pairwise disjoint and Ω =
∞⋃

n=1

En. Fix

a sequence (ωn) ⊂ Ω in the following way: ωn ∈ En, n ∈ N. Define pc ∈ P∞ by

pc (B) = max

{
1

n
: ωn ∈ B

}
. It is obvious that sequence (En) is a pc-generating system

such that zf (pc) = sup
n≥1

\
En

|f | dpc, because of Proposition 4.3.2. But as

(
1− 1

n

)
c ≤\

En

|f | dpc < c (for all n ∈ N), it ensues that c = sup
n≥1

\
En

|f | dpc = zf (pc).

Sufficiency. Suppose that for every constant c > 0, identity (10) holds with a suitable
p ∈ P∞. Assume that f is bounded (and denote by b its bound). Now let c > b be any
fixed constant with a corresponding pc ∈ P∞ satisfy (10). Then we trivially obtain that
zf (pc) ≤ b. Hence we must have that c ≤ b, which is in contradiction with the choice of
c. This absurdity allows us to conclude on the validity of the proposition.

Lemma 5.4.2 Let p ∈ P∞ and (Bn) be a sequence of measurable sets tending increasingly
to a measurable set B 6= ∅. Then there exists some n0 ∈ N such that p (B) = p (Bn)
whenever n ≥ n0.

The proof given to Lemma 0.1, [5], is also valid for Lemma 5.4.2, so we shall omit it.
We shall next give a set of measurable functions, including the uniformly bounded

ones, which we shall proceed to characterize latter on.

Definition 5.4.1 We say that a sequence of measurable functions (fn) is uniformly bounded
starting from an index if there can be found a real number b > 0 and some positive integer
n0 such that (fn > b) = ∅ for all integers n > n0. (We shall simply say that (fn) is
i-uniformly bounded.)

The following two results are just the extensions of Theorem 5.2.1 and Lemma 5.2.1.
We shall omit their proofs as they can be similarly carried out.

Lemma 5.4.3 Let (gn) be a decreasing sequence of non-negative measurable functions
and lim

n→∞
gn = g such that (gm ≤ b) = Ω for some m ≥ 1 and some constant b > 0. Then

for all p ∈ P
lim

n→∞

\
Ω

gndp =

\
Ω

gdp.
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Lemma 5.4.4 Let (fn) be an i-uniformly bounded sequence of non-negative measurable
functions. Then for every p ∈ P

lim sup
n→∞

\
Ω

fndp ≤
\

Ω

(
lim sup

n→∞
fn

)
dp.

Theorem 5.4.2 (Agbeko, [7]) Let (fn) be an arbitrary sequence of measurable func-
tions. Then

1. Sequence (fn) is i-uniformly bounded, if and only if the following two assertions hold
simultaneously:

2. zf (p) ≤ c for some constant c > 0 and all p ∈ P∞ ;

3. lim sup
n→∞

zn (p) ≤ zf (p), for all p ∈ P∞ (where f = lim sup
n→∞

|fn| and zn (p) =

\
Ω

|fn| dp

with n ∈ N , p ∈ P∞).

Proof. Necessity. We just note that the implication 1.→ 2. is obvious and on the
other hand the implication 1.→ 3. is no more than Lemma 5.4.4.
Sufficiency. Assume that assertions 2. and 3. hold simultaneously. Let us suppose
further that assertion 1. is false, i.e. for every real number b > 0 and any posi-
tive integer n0 there is some integer m > n0 such that (|fm| > b) 6= ∅. Then we can
choose by recurrence a sequence (nk) of positive integers as follows. Write n1 = 1
and n2 = min {m > n1 : (|fm| > n1) 6= ∅ }. If nk has been defined, then write nk+1 =
min {m > nk : (|fm| > k · nk) 6= ∅ }. Clearly, the sequence (nk) tends increasingly to infin-

ity and for all positive integers k ∈ N,
(∣∣fnk+1

∣∣ > k · nk

) 6= ∅. Now set E =
∞⋃

k=1

Bnk
, where

Bnk
=

(∣∣fnk+1

∣∣ > k · nk

)
, k ∈ N. Write H1 = Bn1, and Hk =

(
k⋃

j=1

Bnj

)
\

(
k−1⋃
j=1

Bnj

)
,

k > 2. It is obvious that (Hk) is a sequence of pairwise disjoint measurable sets with

E =
∞⋃

k=1

Hk. Let p ∈ P∞ be a 1st-type E-dependent optimal measure defined by p (B) =

max
{

1
k

: ωk ∈ B
}
, where (ωk) ⊂ Ω is a fixed sequence so that ωk ∈ Hk (k ∈ N). It is clear

thatH (p) = {Hk : k ∈ N} is a p-generating system. Then via assertions 2. and 3. we have

that c ≥
\

Ω

(
lim sup

n→∞
|fn|

)
dp ≥ lim sup

n→∞

\
Ω

|fn| dp and hence b > lim sup
k→∞

\
Ω

∣∣fnk+1

∣∣ dp for

some b > 0 (this is true because of Remark 5.4.1). Consequently, as p (Hk) =
1

k
for every

k ∈ N, we must have

b > lim sup
k→∞

\
Ω

∣∣fnk+1

∣∣ dp = lim sup
k→∞

\
E

∣∣fnk+1

∣∣ dp ≥ lim sup
k→∞

\
Hk

∣∣fnk+1

∣∣ dp

≥ lim sup
k→∞

k · nk · p (Hk) = ∞,

which is absurd. This contradiction justifies the validity of the argument.
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5.5 Banach spaces induced by optimal measures

Throughout this section we shall be dealing with an arbitrary but fixed optimal measure
space (Ω, F , p).

Let f : Ω → R ∪ {−∞, ∞} be any measurable function. We shall say that f belongs
to:
1. A∞ if p ( |f | ≤ b) = 1 for some constant b ∈ (0, ∞).

2. Aα if

\
Ω

|f |α dp < ∞, α ∈ [1, ∞).

For any α ∈ [1, ∞], the space Aα (p) endowed with the norm ‖·‖α, defined by

‖f‖Aα =





inf {b ∈ (0, ∞) : p ( |f | ≤ b) = 1} , if f ∈ A∞ (p) , α = ∞

α

√\
Ω

|f |α dp, if f ∈ Aα (p) , α ∈ [1, ∞)

As in the case of Lp-spaces in measure theory, it can be similarly seen that ‖·‖α is a
semi-norm.

Lemma 5.5.1 -

1. A |fg| ≤ ‖f‖Aα ‖g‖A∞ whenever f ∈ A1 and g ∈ A∞.

2. Let α and β ∈ (1, ∞) be such that α−1 + β−1. Then A |fg| ≤ ‖f‖Aα ‖g‖Aβ (called
the optimal Hölder inequality), whenever f ∈ Aα and g ∈ Aβ.

3. ‖f + g‖Aα ≤ ‖f‖Aα + ‖g‖Aα (called the optimal Minkowski inequality) whenever
f ∈ Aα and g ∈ Aα, with α ∈ [1, ∞].

Definition 5.5.1 Let (fn) ⊂ Aα, α ∈ [1, ∞], be any sequence of measurable functions.

1. We say that (fn) is a Cauchy sequence in Aα if for every number ε ∈ (0, 1) there
is some index n0 := n0 (ε) such that ‖fn − fm‖Aα < ε, whenever n, m ≥ n0.

2. We say that (fn) converges to a measurable function f in Aα-norm if for every
number ε ∈ (0, 1) there is some index n0 := n0 (ε) such that ‖fn − f‖Aα → 0 as
n →∞.

Remark 5.5.1 For every number α ∈ (1, ∞), we have A∞ ⊂ Aα ⊂ A1.

Theorem 5.5.1 (Agbeko, [5]) For each number α ∈ [1, ∞], Aα is a Banach space (i.e.
every Cauchy sequence in Aα converges to a measurable function in Aα-norm).
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CHAPTER VI

SOME MAXIMAL INEQUALITIES RELATED

WITH PROBABILITY MEASURE

6.1 Introduction

Some notations.
* ∇:= the set of all non-negative increasing function.
* ∆2:= the set of all convex Young functions that satisfy the growth condition.
* Yconc:= the set of all concave Young functions.
* ∆:= the set of all convex functions.

In the whole chapter we shall be dealing with an arbitrary probability space (Ω, F , P ).
Let Φ be a convex Young function, i.e.

Φ (x) =

x∫

0

ϕ (t) dt, x ∈ R+,

where ϕ : (0, ∞) → (0, ∞) is a right-continuous and increasing function such that ϕ (0) ≥
0 and ϕ (∞) = ∞. We say that Φ satisfies the growth condition if

Φ (2x) ≤ cΦ (x) for all x ∈ R+, (11)

where c is a positive constant. For more about convex Young function, see [40].
It is also interesting to remind some facts about the so-called the conjugate Young

functions, which can be defined as follows:
For t ∈ (0, ∞) put γ (t) := sup {x > 0 : ϕ (x) < t} and let γ (0) = 0. It can be

easily checked that γ satisfies all the conditions imposed on ϕ and we trivially have
γ (ϕ (x)) ≤ x ≤ γ (ϕ (x) + 0), whenever x ∈ (0, ∞).

The convex Young function

Γ (x) :=

∫ x

0

γ (t) dt, x ∈ [0, ∞) ,

is said to be conjugate to Φ and the pair (Φ, Γ) is referred to as mutually conjugate convex
Young functions.

The pair (Φ, Γ) of mutually conjugate convex Young functions satisfies the following
Young inequality

xy ≤ Φ (x) + Γ (y)

for all x, y ∈ [0, ∞), and the equality holds if and only if y ∈ [ϕ (x) , ϕ (x + 0)] or
x ∈ [γ (y) , γ (y + 0)].
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The quantity q := lim supx→∞
xγ (x)

Γ (x)
is called the power of Γ, where Γ is a convex

Young function.
Mogyoródi J. and Móri T. F. in [46] obtained the following nice result:
Let (Φ, Γ) be a pair of mutually conjugate convex Young functions. In order that the

power q of Γ be finite it is necessary and sufficient that the condition

β := lim sup
x→∞

1

ϕ (x)

x∫

1

ϕ (t)

t
dt < ∞ (12)

should hold true.
A function Ψ : R+ → R+ is called a concave Young function if for all x ≥ 0 it is

defined by

Ψ (x) =

∫ x

0

ψ (t) dt,

where Ψ (0) = 0 and ψ : (0, ∞) → (0, ∞) is a decreasing right-continuous such that ψ is
integrable on every finite interval (0, x). All along we assume that Ψ (∞) = ∞. For more
about concave Young-functions see [49], say).

We note that if Ψ is a concave Young-function, then the following assertions are
immediate:

1. bΨ is also a concave Young function for all positive constant b;

2.
Ψ (x)

x
is a decreasing function on the interval (0, ∞).

3. For all x ∈ R+ and every constant c ∈ (1, ∞) we have

Ψ (cx) ≤ cΨ (x) . (13)

6.2 Moment inequalities for the maximum cumula-

tive sums

Let X1, . . . , Xn be arbitrary random variables. Denote

Sj :=

j∑

k=1

Xk (S0 = 0), Mn :=
n∨

k=1

|Sk| , Si, j :=

j∑

k=i

Xk if 1 ≤ i ≤ j ≤ n.

The aim of this section is to extend Billingsley’s (cf. [19])l Longnecker and Serfling’s
(cf. [42]), Móricz’ (cf. [50]) and Serfling’s (cf. [61]) results to convex and concave Young
functions, respectively. In doing so we obtain new bounds in the inequalities involved
which are easier to be handled and got an improvement for the maximizing constant in
[42], Theorem

Theorem 6.2.1 (Agbeko, [4]) Let X1, . . . , Xn be arbitrary random variables.
Part A.
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i. If Φ ∈ ∆2 and G ∈ O such that

EΦ (|Si, j|) ≤ G (g (i, j)) , (14)

for all 1 ≤ i ≤ j ≤ n, where g is a positive function satisfying either

g (i, j) + g (j + 1, k) ≤ g (i, k) (15)

whenever 1 ≤ k ≤ n, or
g (i, j)

g (1, n)
≤ j − i + 1

n
(16)

for all 1 ≤ i ≤ j ≤ n, then

EΦ (Mn) ≤ 3cG (g (1, n)) , (17)

where c satisfies (11).

ii. If Φ ∈ ∆2 and G ∈ O ∩∆ such that (14) holds, then

EΦ (Mn) ≤ c {G (0) + 2G (g (1, n))} , (18)

where c satisfies (11).

Part B. If Φ ∈ Yconc and G ∈ O such that (14) holds, then

EΦ (Mn) ≤ 5G (g (1, n)) . (19)

Following the approach of [42] Theorem 6.2.1 can be easily derived from two lemmas below.

Lemma 6.2.1 Let the non-negative function g (i, j) satisfy either (15) or (16). Then
there exist non-negative constants u1, . . . , un such that

g (1, n) =
n∑

k=1

uk (20)

and whenever 1 ≤ i ≤ j ≤ n,

g (i, j) ≤
j∑

k=i

uk. (21)

For the proof, see [42].

Lemma 6.2.2 Let X1, . . . , Xn be arbitrary random variables, Φ and G be any functions.
Part A.

i.) If Φ ∈ ∆2 and G ∈ O such that

EΦ (|Si, j|) ≤ G

(
j∑

k=i

uk

)
, (22)

for all 1 ≤ i ≤ j ≤ n, then

EΦ (Mn) ≤ 3cG

(
n∑

k=1

uk

)
, (23)

where c satisfies (11).
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ii. If Φ ∈ ∆2 and G ∈ O ∩∆ are such that (22) holds, then

EΦ (Mn) ≤ c

{
G (0) + 2G

(
n∑

k=1

uk

)}
, (24)

where c satisfies (11).

Part B. If Φ ∈ Yconc and G ∈ O are such that (22) holds, then

EΦ (Mn) ≤ 5G

(
n∑

k=1

uk

)
. (25)

Proof. The proof is similar to that of Lemma 2 in [42]. In fact, the lemma is
obvious for the case n = 1. Make the induction hypothesis that the lemma has been
established for all counting numbers n satisfying 1 ≤ n ≤ N . Let us show that the
lemma is also valid for n = N . To this end put u = u1 + . . . + uN and define the integer

m := min
{

k :
u

2
≤ u1 + . . . + uk

}
. Then





u1 + . . . + um−1 ≤ u

2
,

um+1 + . . . + uN ≤ u

2
.

(26)

Define

L1 := Mm−1 =
m−1∨

k=0

|Sk| and L2 :=
N∨

k=m

|Sk − Sm| .

We obviously have that on the one hand |Sn| ≤ L1 for 1 ≤ n ≤ m−1, and |Sn| ≤ |Sm|+L2

for m ≤ n ≤ N on the other.
Part A/(i). It is obvious that Φ (MN) ≤ Φ (L1) + Φ (L2 + |Sm|). Inequality (11)

implies that
Φ (MN) ≤ Φ (L1) + c [Φ (L2) + Φ (|Sm|)] .

Thus,
EΦ (MN) ≤ (1 ∨ c) {EΦ (L1) + EΦ (L2) + EΦ (|Sm|)} . (27)

By (22) and (26), the induction hypothesis and the monotonicity of G, we obtain that

EΦ (MN) ≤ 3 (1 ∨ c) G (u) . (28)

Similarly, applying twice inequality (11) we observe that

Φ (MN) ≤ Φ (L1 + L2 + |Sm|) ≤ c {Φ (L1) + Φ (L2 + |Sm|)} (29)

≤ (
c ∨ c2

) {Φ (L1) + Φ (L2) + Φ (|Sm|)} .

Thus, recalling (22), (26), the induction hypothesis and the monotonicity of function G,
we have that

EΦ (MN) ≤ 3
(
c ∨ c2

)
G (u) . (30)
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Combining (28) and (30) yields EΦ (MN) ≤ 3 [(1 ∨ c) ∧ (c ∨ c2)] G (u). Hence EΦ (MN) ≤
3cG (u), where c satisfies inequality (11). This completes the proof of Part A/(i).

The proof of Part A/(ii) is similar to that of Part A/(i). Applying inequalities
(22) and (26) in (27) and (29), the induction hypothesis and the convexity of function G
yields (24).

Part B. It is obvious by (13) that

Φ (MN) ≤ Φ (L1) + Φ (L2 + |Sm|) ≤ Φ (L1) + Φ (2 (L2 ∨ |Sm|))
≤ Φ (L1) + 2Φ (L2 ∨ |Sm|) .

But since

EΦ (L2 ∨ |Sm|) =

∫

(L2≥|Sm|)

Φ (L2) dP +

∫

(L2<|Sm|)

Φ (|Sm|) dP ≤ EΦ (L2) + EΦ (|Sm|)

it follows that

EΦ (MN) ≤ EΦ (L1) + 2 {EΦ (L2) + EΦ (|Sm|)} .

Once again applying (22) and (26), the induction hypothesis and the monotonicity of
function G in (30), we obtain the desired result in (25). We can thus conclude on the
validity of the lemma.

Corollary 6.2.1 Assume that the conditions of Theorem 6.2.1 hold. Then for all positive
numbers x,

P (Mn ≥ x) ≤ K

Φ (x)
G (g (1, n)) ,

where

K :=





3c if Φ ∈ ∆2, G ∈ O
2c if Φ ∈ ∆2, G ∈ O ∩∆, G (0) = 0
5 if Φ ∈ Yconc, G ∈ O.

Corollary 6.2.2 Assume that the conditions of Lemma 6.2.2 hold.

i. If Φ (x) = xν, ν ≥ 1, and G (x) = xγ, γ > 0, then EM ν
n ≤ 2ν+1

(
n∑

k=1

uk

)γ

.

ii. If Φ (x) = xν, 0 < ν ≤ 1, and G (x) = xγ, γ > 0, then EM ν
n ≤ 5

(
n∑

k=1

uk

)γ

.

We shall here below show an application for Theorem 6.2.1.
Let (Sn, Fn), n ∈ N , be a non-negative martingale in L2. Then for every counting

number n ∈ N , the inequality
EM2

n ≤ 8ES2
n (31)

holds, where Mm =
m∨

k=1

Sk.
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We point out that inequality (31) is due to Garcia [35]. We shall try to derive it from
Theorem 6.3.1 in the following way. Let (0, d1, d2, . . .) be the difference sequence of the
submartingale (Sn, Fn), i.e. for every n ∈ N, dn = Sn − Sn−1 and Sn = d1 + . . . + dn.

For every 1 ≤ i < j ≤ n, define Si, j := di + . . . + dj. It is easily seen that for
1 ≤ i < j ≤ n,

Si, j = Sj − Si−1 and ESi−1Sj = E (Si−1E (Sj|Fi−1)) ≥ ES2
i−1.

Hence ES2
i, j ≤ ES2

j − ES2
i−1. It can easily be checked that the function g, defined by

g (i, j) := ES2
j − ES2

i−1, satisfies the property that g (i, j) + g (j + 1, k) = g (i, k). Thus
with the choice of Φ (x) = x2, Part A/(ii) of Theorem 6.3.1 implies inequality (31). To
end the application we note that a sharper form of inequality (31) is given by J. L. Doob,
where the constant factor equals only 4.

6.3 Maximal inequalities for non-negative submartin-

gales related with concave Young-functions

Definition 6.3.1 (Agbeko, [2, 3]) We say that for the concave Young function Φ the
maximal inequality is valid with some positive constant KΦ (depending only on Φ) if for
an arbitrary non-negative submartingale (Xn, Fn), n ∈ N, the inequality

EΦ (X∗
n) ≤ KΦ (1 + EXn) (32)

holds for all n ∈ N, with X∗
n =

n∨
k=1

Xk.

Theorem 6.3.1 (Agbeko, cf. [3]) Let Φ be any concave Young function. In order that
Φ satisfy the above maximal inequality, it is necessary and sufficient that

AΦ :=

∫ ∞

1

ϕ (t)

t
dt < ∞. (33)

Moreover, if AΦ < ∞, then KΦ = max (Φ (1) , AΦ).

Before we tackle the proof there is the need to mention the motivation behind this
theorem and its corresponding definition. Actually in [46], J. Mogyoródi and T. F. Móri
proposed the following definition:

For the convex Young function Φ the Mogyoródi-Móri maximal inequality is said to
be valid if there are some constants a, b > 0 depending only on Φ such that for arbitrary
non-negative submartingale (Xn, Fn), n ∈ N, we have E (Φ (X∗

n)) ≤ a + E (Φ (bXn)),
n ∈ N.

Then they went on to provide the set of all convex Young functions enjoying this
property. We recall their quite remarkable result as follows:

Let (Φ, Γ) be a pair of conjugate Young functions. In order that Φ satisfy the Mo-
gyoródi-Móri maximal inequality it is necessary and sufficient that the power q of Γ (cf.
12) be finite.
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To obtain similar definition and theorem like theirs for concave Young functions im-
perative adjustments were necessary as expressed in Definition 6.3.1 and Theorem 6.3.1.
Now we can prove the theorem left half way, in the same manner Mogyoródi and Móri
demonstrated theirs, we must note.

Proof of Theorem 6.3.1. To prove the sufficiency consider the maximal inequality
of Doob

xP (X∗
n ≥ x) ≤ EXnχ (X∗

n ≥ x) , x > 0,

to be integrated on [1, ∞) with respect to the measure generated by the nondecreasing
function ∫ x

1

ϕ (t)

t
dt.

By the Fubini theorem it follows that

E

∫ X∗
n∨1

1

ϕ (x) dx ≤ EXn

∫ X∗
n∨1

1

ϕ (t)

t
dt ≤ AΦEXn,

since ∫ X∗
n∨1

1

ϕ (t)

t
dt ≤ AΦ.

Consequently, EΦ (X∗
n) ≤ Φ (1)+AΦEXn. By choosing KΦ = max {AΦ, Φ (1)} we obtain

(32).
To prove the necessity suppose that the maximal inequality holds for φ with some

constant KΦ > 0. Let (xn) be an arbitrary sequence of real numbers such that x1 = 1,
xn < xn+1 < 2xn, limn→∞ xn = ∞ and

AΦ :=

∫ ∞

1

ϕ (t)

t
dt = lim

n→∞

∫ xn

1

ϕ (t)

t
dt. (34)

Consider the probability space
(
N, 2N, P

)
with 2N is the power set of N. The probability

measure is defined on
(
N, 2N

)
as follows:

P ({n}) =
1

xn

− 1

xn+1

, n ∈ N.

Define for every n ∈ N, the random variable

Xn (ω) = xnχ (ω ≥ n) , ω ∈ N,

and let Fn := σ ({1} , . . . , {n− 1} . . . {n, n + 1, . . .}) be the minimal σ-algebra generated
by the measurable partition noted in the brackets.

It can be easily shown that (Xn, Fn), n ∈ N, is a non-negative martingale, and

X∗
n =

{
xω if ω < n
xn if ω ≥ n.

In virtue of the maximal inequality we have

n−1∑
k=1

Φ (xk)

(
1

xk

− 1

xk+1

)
+

Φ (xn)

xn

≤ 2KΦ, (35)
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since here EXn = 1.
The sum of the left hand side of inequality (34) can be estimated as follows:

n−1∑
k=1

Φ (xk)

(
1

xk

− 1

xk+1

)
=

n−1∑
k=1

Φ (xk)
xk+1∫
xk

1

t2
dt ≥ 1

2

xn∫
1

Φ (t)

t2
dt =

=
1

2

{
Φ (1)− Φ (xn)

xn

+
xn∫
1

ϕ (t)

t
dt

}

in virtue of the integration by parts. Consequently, (35) implies

xn∫
1

ϕ (t)

t
dt +

Φ (xn)

xn

≤ 4KΦ − Φ (1) .

Passing to the limit, we observe by (34) that

∞∫
1

ϕ (t)

t
dt ≤ 4KΦ − Φ (1)− α < ∞,

where 0 ≤ α = limx→∞
Φ (x)

x
. Therefore, we can conclude that the argument is valid one.

We shall formulate here without proof the following two results which can be found
in [2]. But first let Φ be any concave Young function and denote

ξ (x) := Φ (x)− xϕ (x) . (36)

Theorem 6.3.2 (cf. [2]) Let Φ be any concave Young function and ξ (x) be defined as
in (36). Then for any non-negative supermartingale (Xn, Fn), n ∈ N, we have

1. the inequality
(1− b) EΦ (X∗

n)− a ≤ Eξ (X∗
n)

is valid for some constants a ≥ 0 and 0 < b < 1, if and only if

lim sup
x→∞

xϕ (x)

Φ (x)
< 1; (37)

2. if inequality (37) holds true, then

EΦ (X∗
n) ≤ KΦ (1 + EΦ (X1))

for some constant KΦ > 0 depending only on Φ.

Theorem 6.3.3 (cf. [2]) Let Φ be any concave Young function and ξ (x) be defined as
in (36). Then for any non-negative submartingale (Xn, Fn), n ∈ N,

1. the inequality
(1− b) EΦ (X∗

n)− a ≤ Eξ (X∗
n)

is valid for some constants a ≥ 0 and 0 < b < 1, if and only if

lim sup
x→∞

xϕ (x)

Φ (x)
< 1; (38)
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2. we have
Eξ (X∗

n) ≤ CΦ (1 + EXn)

for some positive constant CΦ depending only on Φ;

3. if inequality (38) holds true, then

EΦ (X∗
n) ≤ CΦ (1 + EXn)

for some positive constant CΦ depending only on Φ.

We say that a concave Young-function Φ satisfies the density-level property if AΦ (∞) <
∞. The quantity AΦ (∞) will be referred to as density-level and the function AΦ :
[1, ∞) → [0, ∞), defined by

AΦ (x) =

∫ x

1

ϕ (t)

t
dt,

will be called density-level function.
For instance the concave Young-functions Φ1 (x) =

√
x and Φ2 (x) = ln (x + 1), defined

for x ∈ [0, ∞), have finite density-levels. The concave Young-function Φ3 (x) = 2x+1−e−x

is of infinite density-level. In fact, if we let ϕ3 (x) stand for the derivative of function
Φ3 (x), then

AΦ3 (∞) =

∫ ∞

1

ϕ3 (t)

t
dt ≥

∫ ∞

1

2

t
dt = ∞.

Theorem B suggests that the set of concave Young-functions that satisfy the density-
level property is a rather broad class.

Define function A∗
Φ : (0, ∞) → (0, ∞] by

A∗
Φ (b) =

∫ ∞

b

ϕ (x)

x
dx,

where Φ ∈ Yconc.
It is not difficult to see that A∗

Φ1
(b) < ∞ and A∗

Φ3
(b) = ∞, for any number b ∈ (0, ∞),

where functions Φ1 (x) =
√

x and Φ3 (x) = 2x + 1− e−x are defined for x ∈ [0, ∞).

Remark 6.3.1 The function x−1Φ (x) is decreasing on the interval (0, ∞) and

0 ≤ lim
x→∞

Φ (x)

x
< ∞.

A will denote the set of all functions Φ ∈ Yconc that satisfy the density-level property.
We note that A is a proper subset of Yconc, since the concave Young-function Φ3 :

[0, ∞) → [0, ∞), defined above by Φ3 (x) = 2x + 1 − e−x, was shown to be of infinite
density-level.

In the next two sections we study, among others, the closure of A under the composition
operation. In a sense, Theorems 6.4.1 and 6.4.2 show that the concave Young-functions
with the density-level property behave like left and right ideal with respect to the com-
position operation. We also realized that not every function Φ ∈ Yconc admits a positive
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fixed point. The investigation in this direction leads us to isolate a class of functions
in Yconc enjoying this property. The notion of degree of contraction is introduced. We
show that every concave Young-function is square integrable with respect to a specific
given Lebesgue measure, and we prove that the natural distance defined by the L2-norm
satisfies the metric axioms in Yconc. We then demonstrate that the subset A proves to be
a dense set in Yconc.

6.4 The closure of A under addition and composi-

tion operations

Remark 6.4.1 For every number s ∈ (0, ∞) we have that sϕ (s) < Φ (s) .

In fact, fix arbitrarily two numbers s ∈ (0, ∞) and b ∈ (0, s) . Then by applying twice
the fact that ϕ decreases on (0, ∞), we have that

Φ (s) =

∫ s

0

ϕ (t) dt =

∫ b

0

ϕ (t) dt +

∫ s

b

ϕ (t) dt ≥ bϕ (b) + (s− b) ϕ (s) >

> bϕ (s) + (s− b) ϕ (s) = sϕ (s) .

This proved the remark.
The following remark is an immediate consequence of Theorem B.

Remark 6.4.2 Let Φ ∈ Yconc. If Φ ∈ A, then Φ (x) ≤ KΦ (1 + x) for all x ∈ (0, ∞),
where KΦ = max (Φ (1) , AΦ (∞)) .

Remark 6.4.3 The composition of two concave Young-functions is also a concave Young-
function.

The following two lemmas are trivial.

Lemma 6.4.1 For any number b ∈ (0, ∞) and function Φ ∈ Yconc, we have that bΦ ∈ A

if and only if Φ ∈ A. Moreover, AbΦ (x) = bAΦ (x), x ∈ [1, ∞).

Lemma 6.4.2 Let functions Φ1 and Φ2 ∈ Yconc be arbitrary. Then Φ1 and Φ2 ∈ A if and
only if Φ1 + Φ2 ∈ A. Furthermore, AΦ1+Φ2 (x) = AΦ1 (x) + AΦ2 (x), x ∈ [1, ∞) .

Theorem 6.4.1 (Agbeko, [9]) Let functions Φ1 and Φ2 ∈ Yconc be arbitrary. If Φ2 ∈ A,
then Φ1 ◦ Φ2 ∈ A.

Proof. Write ϕi for the derivative of Φi (i ∈ {1, 2}). Compute the density-level of
the composition Φ1 ◦ Φ2.

AΦ1◦Φ2 (∞) =

∫ ∞

1

ϕ2 (x) ϕ1 (Φ2 (x))

x
dx

≤ ϕ1 (Φ2 (1))

∫ ∞

1

ϕ2 (x)

x
dx = ϕ1 (Φ2 (1)) AΦ2 (∞) < ∞,

via the monotonicity of function ϕ1.
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Remark 6.4.4 Let Φ ∈ Yconc. Then for Φ to belong to A it is necessary that limt→∞ ϕ (t) =
0.

Proof. Assume that Φ ∈ A but limt→∞ ϕ (t) = l0 > 0. Pick an arbitrarily fixed
number t ∈ (1, ∞). Then

∞ > AΦ (∞) ≥
∫ t

1

ϕ (x)

x
dx ≥ ϕ (t) log (t) > l0 log (t) .

Passing to the limit, it will follow that∞ = AΦ (∞) < ∞, which is absurd. This completes
the proof.

The following remark suggests that if Φ ∈ Yconc, then either A∗
Φ (b) = ∞ for all

b ∈ (0, ∞), or A∗
Φ (b) < ∞ for all b ∈ (0, ∞).

Remark 6.4.5 Let Φ ∈ Yconc. Then A∗
Φ (b) < ∞ for every constant b ∈ (0, ∞) \ {1} if

and only if AΦ (∞) < ∞.

Proof. A simple computation shows that

A∗
Φ (b) =

∫ ∞

b

ϕ (x)

x
dx =





AΦ (∞) +

∫ 1

b

ϕ(x)
x

dx if b < 1

AΦ (∞)−
∫ b

1

ϕ(x)
x

dx if b > 1

which yields the result.

Theorem 6.4.2 (Agbeko, [9]) Let functions Φ1 and Φ2 ∈ Yconc be arbitrary. If Φ1 ∈ A,
then Φ1 ◦ Φ2 ∈ A.

Proof. We first show that

AΦ1 (∞) =

∫ ∞

Φ−1
2 (1)

ϕ2 (t) ϕ1 (Φ2 (t))

Φ2 (t)
dt,

where Φ−1
2 is the inverse function of Φ2 (whose existence is guaranteed by the continuity

of Φ2).
In fact, by definition we have that

AΦ1 (∞) =

∫ ∞

1

ϕ1 (x)

x
dx.

Now, setting x = Φ2 (t) we observe that dx = ϕ2 (t) dt and thus

AΦ1 (∞) =

∫ ∞

Φ−1
2 (1)

ϕ2 (t) ϕ1 (Φ2 (t))

Φ2 (t)
dt.

48



Next, compute the density-level of the composition Φ1 ◦ Φ2. Remark 6.3.1 implies that

AΦ1◦Φ2 (∞) =

∫ ∞

1

ϕ2 (t) ϕ1 (Φ2 (t))

t
dt

=

∫ ∞

1

Φ2 (t)

t

ϕ2 (t) ϕ1 (Φ2 (t))

Φ2 (t)
dt

≤ c

∫ ∞

Φ−1
2 (1)

ϕ2 (t) ϕ1 (Φ2 (t))

Φ2 (t)
dt = cAΦ1 (∞) ,

where c = 1
Φ−1

2 (1)
(the second equality holds because of the claim shown above), which

was to be proven.

Corollary 6.4.1 Let Φ ∈ Yconc and α ∈ (0, 1) be arbitrary. Then Φα ∈ A, where the
function Φα : [0, ∞) → [0, ∞) is defined by Φα (x) = Φα (x) = (Φ (x))α.

Proposition 6.4.1 Let x, y ∈ (0,∞) and ∆ ⊂ Yconc (with ∆ 6= ∅) be arbitrary. Then

∣∣∣∣sup
Φ∈∆

Φ (x)− sup
Φ∈∆

Φ (y)

∣∣∣∣ ≤ sup
Φ∈∆

|Φ (x)− Φ (y)| ,

provided that supΦ∈∆ Φ (t) < ∞ for all t ∈ (0,∞) .

Proof. We first note that

Φ (x) ≤ |Φ (x)− Φ (y)|+ Φ (y) and Φ (y) ≤ |Φ (x)− Φ (y)|+ Φ (x) .

Taking the supremum we can easily observe that

sup
Φ∈∆

Φ (x) ≤ sup
Φ∈∆

|Φ (x)− Φ (y)|+ sup
Φ∈∆

Φ (y)

and
sup
Φ∈∆

Φ (y) ≤ sup
Φ∈∆

|Φ (x)− Φ (y)|+ sup
Φ∈∆

Φ (x) .

Combining these inequalities we have that

− sup
Φ∈∆

|Φ (x)− Φ (y)| ≤ sup
Φ∈∆

Φ (x)− sup
Φ∈∆

Φ (y) ≤ sup
Φ∈∆

|Φ (x)− Φ (y)| ,

which yields the result.
We know that kΦ ∈ Yconc for any fixed Φ ∈ Yconc and all k ≥ 1. Then

sup
Φ∈Yconc

Φ (x) ≥ sup
k≥1

kΦ (x) =

{
0 if x = 0
∞ if x ∈ (0, ∞) ,

meaning that there is no real function g (x) such that Φ (x) ≤ g (x) for all Φ ∈ Yconc and
x ∈ [0, ∞). Nevertheless, this is possible for their suitably normalized forms, as shown in
the following lemma.
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Lemma 6.4.3 The function S : [0, ∞) → [0, ∞), defined by

S (x) = sup
Φ∈Yconc

(Φ (1))−1 Φ (x) ,

enjoys the following properties:

1. S (0) = 0 and S (1) = 1.

2. S is a non-decreasing function such that (Φ (1))−1 Φ (x) ≤ S (x) for all Φ ∈ Yconc

and x ∈ [0, ∞).

3. The identity supΦ∈Yconc
(1 + Φ (1))−1 = 1 holds.

4. For every number x ∈ [0, ∞), the chain of inequalities x ≤ S (x) ≤ x+1 holds true.

5. We have that limx→∞
S (x)

x
= 1 and limx→∞ S (x) = ∞.

Proof. The first part is obvious. We show that S (x) is a non-decreasing function. In
fact, pick arbitrarily two numbers x1and x2 ∈ [0, ∞) with x1 < x2. By the monotonicity
we have that Φ (x1) < Φ (x2). If we normalize this inequality suitably and then take the
supremum on both sides over all Φ ∈ Yconc we can then observe that S (x1) ≤ S (x2).
Thus S is a non-decreasing function. To show the identity in the third part we begin
by establishing the inequality (1 + Φ (1))−1 ≤ 1, which holds for every Φ ∈ Yconc. Then
supΦ∈Yconc

(1 + Φ (1))−1 ≤ 1. We also know that k−1Φ ∈ Yconc for any fixed integer k ≥ 1.

Hence (1 + k−1Φ (1))
−1 ≤ supΦ∈Yconc

(1 + Φ (1))−1. Passing to the limit we observe that

limk→∞ (1 + k−1Φ (1))
−1

= 1. Consequently supΦ∈Yconc
(1 + Φ (1))−1 = 1. The fourth part

will be proved if we show that S (x) ≤ x + 1 and S (x) ≥ x for all x ∈ [0, ∞). In fact,
take arbitrarily a function Φ ∈ Yconc. Clearly the equation of the tangent line of Φ at the
point (1, Φ (1)) is given by y = ϕ (1) (x− 1) + Φ (1), x ∈ [0, ∞). Via the concavity of Φ,
it is obvious that Φ (x) ≤ ϕ (1) (x − 1) + Φ (1), x ∈ [0, ∞). Hence by Remark 6.4.1 we
have: Φ (x) ≤ ϕ (1) x + Φ (1) < Φ (1) (x + 1), x ∈ [0, ∞). This implies that S (x) < x + 1,
for all x ∈ [0, ∞). Finally fix arbitrarily a function Φ ∈ Yconc. Then the function, defined
on [0, ∞) by x + Φ (x) (for any fixed Φ ∈ Yconc), also belongs to Yconc. Hence

S (x) ≥ x + Φ (x)

1 + Φ (1)
≥ x

1 + Φ (1)
, x ∈ [0, ∞) .

Now taking the supremum over Φ ∈ Yconc, the third part leads to the desired inequality
S (x) ≥ x. To complete the proof we just point out that the fifth part grows obvious
because of the fourth part.

6.5 The fixed points of a class of concave Young-

functions

In mathematical analysis, there are various fixed-point theorems. Fixed points are also
known as equilibria or stationary points. We shall remind only three of these theorems.
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The Kakutani fixed point theorem is a fixed-point theorem for set-valued functions. It
provides sufficient conditions for a set-valued function defined on a convex, compact subset
of an Euclidean space Rn to have a fixed point, i.e. a point which is mapped to a set
containing the point itself.

The Kakutani ’s fixed point theorem developed in 1941 [38] was famously used by John
Nash [51] in his description of Nash equilibrium, which has been worth him the Nobel Price
in Economics. It has subsequently found widespread applications in game theory besides
the economics application.

The Kakutani fixed point theorem is actually a generalization of Brouwer fixed point
theorem [20]. It states that every continuous function from the closed unit ball Dn to
itself has at least one fixed point (where n is any positive integer, the closed unit ball is
the set of all points in Euclidean Rn which are at distance at most 1 from the origin, and
a fixed point of a function f : Dn → Dn is a point x in Dn such that f (x) = x).

The Brouwer fixed point theorem is a fundamental result in topology which proves
the existence of fixed points for continuous functions defined on compact, convex subsets
of Euclidean spaces.

Perhaps it is worth mentioning some two elegant illustrations of the Brouwer fixed
point theorem. (See
http://www.marginalrevolution.com/marginalrevolution/2004/08/kakutani is at .html)

1. ”One morning, exactly at sunrise, a Buddhist monk began to climb a tall mountain.
The narrow path, no more than a foot or two wide, spiraled around the mountain to
a glittering temple at the summit. The monk ascended the path at varying rates of
speed, stopping many times along the way to rest and to eat the dried fruit he carried
with him. He reached the temple shortly before sunset. After several days of fasting
and meditation he began his journey back along the same path, starting at sunrise
and again walking at variable speeds with many pauses along the way. His average
speed descending was, of course, greater than his average climbing speed. Prove that
there is a spot along the path that the monk will occupy on both trips at precisely the
same time of day.”

”Here is an intuitive proof of the monk problem. Imagine that there are two monks,
one going down and one going up, each beginning on the same day at sunrise. At some
point in the day the hiker’s must meet!” However, we must note that the Brouwer’s fixed
point theorem guarantees a rigorous existence of such spot.

2. Take two sheets of graph paper of equal size with coordinate systems on them, lay one
flat on the table and crumple up (without ripping or tearing) the other one and place
it any fashion on top of the first so that the crumpled paper does not reach outside
the flat one. There will then be at least one point of the crumpled sheet that lies
exactly on top of its corresponding point (i.e. the point with the same coordinates)
of the flat sheet.

This is a consequence of the n = 2 case of Brouwer’s theorem applied to the continuous
map that assigns to the coordinates of every point of the crumpled sheet the coordinates
of the point of the flat sheet immediately beneath it.
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In dynamic models, stationary equilibrium is typically described as a solution of the
equation x = f (x), where f is a mapping which determines the current state as a function
of the previous state, or as a function of the expected future state. In many cases x is
a finite dimensional vector, and in general positive solutions (i.e. fixed points of f) are
rather sought for. We note that this type of problem have been investigated for decades,
and in many occasions for concave functions.

The third well-known fixed point theorem, though more restrictive than the Brouwer’s
one, guarantees the existence of a unique fixed point. We remind the following definition:

Definition 6.5.1 A function T from a metric space (M, ρ) to itself is called a contraction
if there is an α which satisfies 0 ≤ α < 1 so that ρ (T (x) , T (y)) ≤ αρ (x, y) for all
x, y ∈ M.

Contraction Mapping Principle. ([57]) Let T be a contraction on a complete metric
space (M, ρ). Then there is a unique point x ∈ M (called fixed point) such that T (x) = x.
Furthermore, if x0 is any point in M and we define xn+1 = T (xn), then limn→∞ xn = x.

I should like to mention the nice work of my colleague J. Mészáros (cf. [43]) in which
he connected various forms of contraction principles.

We shall seek for all those positive numbers which can be a fixed point for any given
concave Young function.

Theorem 6.5.1 Let Φ ∈ Yconc and c∗ be any positive number. In order that the equality
Φ (c∗) = c∗ hold, it is necessary and sufficient that the range of the function Φ|[c∗,∞) :
[c∗, ∞) → [0, ∞), defined by Φ|[c∗,∞) (x) = Φ (x), should equal the interval [c∗, ∞).

Proof. Suppose that Φ|[c∗,∞) (c∗) = Φ (c∗) = c∗. Obviously Φ is a bijection on [0, ∞) .
Hence it follows that Φ|[c∗,∞) is an injection on [c∗, ∞). Since Φ|[c∗,∞) is continuous on
[c∗, ∞) and tends increasingly to ∞, we have that the range of function Φ|[c∗,∞) equals
[Φ (c∗) , ∞) = [c∗, ∞), by assumption. Conversely, assume that the range of Φ|[c∗,∞)

equals interval [c∗, ∞) , but in the contrary there is some number y ∈ (c∗, ∞) such
that Φ (y) = Φ|[c∗,∞) (y) = c∗. By the assumption it is obvious that function Φ|[c∗,∞) is
surjective on [c∗, ∞). Moreover, Φ|[c∗,∞) maps bijectively the interval [c∗, ∞) onto itself
because it is also an injection. The monotonicity of Φ yields that Φ (c∗) = Φ|[c∗,∞) (c∗) <
Φ (y) = c∗. However, by the bijective property of Φ|[c∗,∞), we have that Φ (c∗) ≥ c∗.
Consequently the inequality c∗ < c∗ will follow. This, however, is absurd. Therefore, we
can conclude on the validity of the argument.

Proposition 6.5.1 (Agbeko, [9]) Let Φ ∈ Yconc be arbitrary and fix any number s ∈
(0, ∞). Then

|Φ (x)− Φ (y)| ≤ ϕ (s) |x− y|
for all numbers x, y ∈ [s, ∞).
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Proof. Pick numbers x, y ∈ [s, ∞) arbitrarily. Via the monotonicity of Φ it follows
that

|Φ (x)− Φ (y)| = max (Φ (x) , Φ (y))−min (Φ (x) , Φ (y))

= Φ (max (x, y))− Φ (min (x, y)) .

Hence the monotonicity of ϕ yields that

|Φ (x)− Φ (y)| =
∫ max(x, y)

min(x, y)

ϕ (t) dt ≤ ϕ (s) (max (x, y)−min (x, y)) = ϕ (s) |x− y| .

This was to be proved.
Next, we characterize the existence of positive fixed points of concave Young-functions

according to some behavior of their derivatives.

Theorem 6.5.2 (Agbeko, [11]) Let Φ ∈ Yconc be arbitrary. In order that there be a
constant s > 0 for which ϕ (s) < 1, it is necessary and sufficient that Φ admit a positive
fixed point, i.e. Φ (x) = x for some number x > 0.

Proof. To prove the sufficiency assume that there is a number s > 0 such that ϕ (s) <
1. Then by recalling Proposition 6.5.1 one can easily observe that Φ is a contraction in
the interval (s, ∞). Consequently, the Contraction Principle (cf. [57]) yields Φ (x) = x
for some x ≥ s. Next, let us show the necessity. Assume that there exists some x0 > 0
for which Φ (x0) = x0, but in the contrary ϕ (t) ≥ 1 for all t > 0. Then it is easy to
check that Φ (x) ≥ x for all x > 0. Since Φ is a strictly concave and increasing function,
the graph of Φ must lie below that of the line y = x on the interval (x0, ∞). This fact,
however, contradicts that Φ (x) ≥ x for all x > 0. Therefore, we can conclude on the
validity of the argument.

Proposition 6.5.2 Let Φ ∈ Yconc be arbitrary. If x0 ∈ (0, ∞) is such that Φ (x0) = x0,
then ϕ (x0) < 1.

Proof. It is not difficult to see that Φ (t) ≥ tϕ (t) whenever t ∈ (0, ∞). Assume the
existence of some x0 ∈ (0, ∞) for which Φ (x0) = x0. Then as noted above

x0 = Φ (x0) ≥ x0ϕ (x0) ,

and hence ϕ (x0) ≤ 1. Now, suppose that ϕ (x0) = 1. Since ϕ is a decreasing function on
(0, ∞), there must be some ε ∈ (0, 1) such that ϕ (x0 + ε) < 1, making Φ be a contraction
on (x0 + ε, ∞), via Proposition 6.5.1. But then it would mean that there must be some
x∗ ∈ (x0 + ε, ∞) with Φ (x∗) = x∗. Necessarily, it would ensue that Φ is not a concave
function on the interval (x0, x∗], a contradiction, indeed. Therefore, ϕ (x0) < 1. This was
to be proven.

Definition 6.5.2 A number s > 0 is called the degree of contraction of a function Φ ∈
Yconc if ϕ (s) = 1.
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We note in this case that ϕ (s + δ) < 1 for any positive number δ, which makes Φ a
contraction for some suitable δ.

The degree of contraction can provide a starting point for any iteration for finding
the positive fixed points of concave Young-functions. In this viewpoint the degree of
contraction can be useful, as a matter of fact.

Example 6.5.1 The degree of contraction of Φ (x) = 4
(√

x + 1− 1
)
, x ∈ [0, ∞), equals

3.

Example 6.5.2 For any fixed number p ∈ (0, 1), the degree of contraction of the function
Φp (x) = xp, x ∈ [0, ∞) is equal to p1/(1−p).

Example 6.5.3 The function Φ (x) = log (x + 1), x ∈ [0, ∞), has no degree of contrac-
tion.

Example 6.5.4 The degree of contraction of function Φ (x) = 2 log (x + 1) exists and
equals 1.

Example 6.5.5 The concave Young function Φ defined by Φ (x) =
x

2
+
√

x does not meet

condition (3). Yet its degree of contraction exists and equals 1.

6.6 Is set A dense in Yconc?

We shall answer this question in the affirmative.

Theorem 6.6.1 (Agbeko, [9]) For any concave Young-function Φ, there exists a se-
quence (Φn) ⊂ A such that (Φn) converges pointwise to Φ, i.e. limn→∞ Φn (x) = Φ (x)
whenever x ∈ [0, ∞).

Proof. Fix arbitrarily an index n ≥ 1 and define Φn (x) = Φn/(n+1) (x), x ∈ [0, ∞) .
Obviously (Φn) ⊂ Yconc because of Remark 6.4.3. So, on the one hand, Corollary 6.4.1
yields that (Φn) ⊂ A. On the other hand we can easily see in the limit that

lim
n→∞

Φn (x) = lim
n→∞

Φn/(n+1) (x) = Φ (x)

for every x ∈ [0, ∞). Therefore, we conclude on the validity of the theorem.

Lemma 6.6.1 Let Φ ∈ Yconc. Then there are constants CΦ > 0 and BΦ ≥ 0 such that

AΦ (∞)−BΦ ≤
∫ ∞

0

Φ (t)

(t + 1)2dt ≤ CΦ + AΦ (∞) .
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Proof. An integration by parts leads
∫ ∞

0

Φ (t)

(t + 1)2dt =

[−Φ (t)

t + 1

]∞

0

+

∫ ∞

0

ϕ (t)

t + 1
dt =

∫ ∞

0

ϕ (t)

t + 1
dt−BΦ, (39)

where 0 ≤ BΦ := limt→∞
Φ (t)

t + 1
< ∞, as

Φ (t)

t + 1
<

Φ (t)

t
for all t ∈ (0, ∞). On the one

hand, ∫ ∞

0

ϕ (t)

t + 1
dt =

∫ 1

0

ϕ (t)

t + 1
dt +

∫ ∞

1

ϕ (t)

t + 1
dt ≤

∫ 1

0

ϕ (t)

t + 1
dt + AΦ (∞) . (40)

On the other hand, by the monotonicity of function ϕ (t) and by the change of variables,
we have that

∫ ∞

0

ϕ (t)

t + 1
dt ≥

∫ ∞

0

ϕ (t + 1)

t + 1
dt =

∫ ∞

1

ϕ (x)

x
dx = AΦ (∞) . (41)

Consequently, if we combine (39)–(41), one can observe that

AΦ (∞)−BΦ ≤
∫ ∞

0

Φ (t)

(t + 1)2dt ≤
∫ 1

0

ϕ (t)

t + 1
dt + BΦ + AΦ (∞) .

This leads to the desired result.

Lemma 6.6.1 suggests that the quantity

∫ ∞

0

Φ(t)

(t+1)2
dt and the density-level AΦ (∞) are

equivalent, in the sense that they are both either finite or infinite. This gives rise to the
following essential result.

Lemma 6.6.2 Let Φ ∈ Yconc be arbitrary. Then

∫ ∞

0

(Φ (x))2

(x + 1)4dx < ∞.

Proof. Clearly,

∫ ∞

0

(Φ (x))2

(x + 1)4dx =

∫ 1

0

(Φ (x))2

(x + 1)4dx +

∫ ∞

1

(Φ (x))2

(x + 1)4dx

≤
∫ 1

0

(Φ (x))2

(x + 1)4dx +

∫ ∞

1

(Φ (x))2

x4
dx.

Integration by parts yields that

∫ ∞

1

(Φ (x))2

x4
dx =

Φ (1)

3
+

2

3

∫ ∞

1

ϕ (x) Φ (x)

x3
dx ≤ Φ (1)

3
+

2ϕ (1) Φ (1)

3
,

because ϕ (x) and
Φ (x)

x
are decreasing functions.

Now endow the half line [0, ∞) with a σ-algebra M containing the Borel sets. Define

a Lebesgue measure µ : M→ [0, ∞) by µ ([0, x)) =
1

3

(
1− 1

(x + 1)3

)
for all x ∈ [0, ∞).
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Let L2 := L2 ([0, ∞) , M, µ) be the collection of all (measurable) square integrable func-
tions. We know (see [60], Remark 11.37, page 326) that the pair (L2, d) is not a metric
space unless we identify functions which differ only on a set of measure zero, where the
mapping d : L2 × L2 → [0, ∞) is defined by

d (f, g) =

√∫

[0,∞)

(f − g)2 dµ =

√∫ ∞

0

(f (x)− g (x))2

(x + 1)4 dx.

By Lemma 6.6.2, we observe that Yconc ⊂ L2. Unfortunately we note that this does
not guarantee that the pair (Yconc, d) is a metric space, for the reason mentioned above.
Nevertheless, we shall prepare the ground for showing that (Yconc, d) is actually a metric
space.

Whenever Φ ∈ Yconc write GΦ for the graph of Φ on [0, ∞), i.e.

GΦ = {(x, Φ (x)) : x ∈ [0, ∞)}

and write G
a||b
Φ for the graph of Φ on the interval [a, b), i.e.

G
a||b
Φ = {(x, Φ (x)) : x ∈ (a, b)} ,

where a < b are any non-negative numbers.

Lemma 6.6.3 Let Φ and Ψ ∈ Yconc be arbitrary with distinct graphs. Then

|{x ∈ (0, ∞) : Φ (x) = Ψ (x)}| ≤ 1,

where |B| stands for the cardinality of B whenever B is a set.

Proof. Suppose in the contrary that

|{x ∈ (0, ∞) : Φ (x) = Ψ (x)}| ≥ 2.

Write
x1 = inf {x ∈ (0, ∞) : Φ (x) = Ψ (x)}

and
x2 = inf {x ∈ (0, ∞) \ {x1} : Φ (x) = Ψ (x)} .

It is clear that 0 < x1 < x2 and Φ (xi) = Ψ (xi), i ∈ {1, 2}. We point out that the two
graphs are continuous. We show that the graph of one of the functions Φ and Ψ lies above
the graph of the other on the interval (0, x1). In fact, without loss of generality we may

assume in the contrary that G
0||x1

Φ lies both above and below G
0||x1

Ψ . Then necessarily
the two graphs must cross each other in the interior of interval (0, x1), i.e. there is
some x0 ∈ (0, x1) such that Φ (x0) = Ψ (x0). This, however is in contradiction with the

minimality of x1. Hence we can assume that G
0||x1

Φ lies above G
0||x1

Ψ . By the continuity
and the fact that Φ (x1) = Ψ (x1) we note that GΦ crosses GΨ at point (x1, Φ (x1)).
Nevertheless, since both Φ and Ψ are unbounded increasing functions and Φ (x2) = Ψ (x2),
the graph GΦ must cross the graph GΨ at point (x2, Φ (x2)). This means that Φ must be
convex on the interval (x1, x2), which is absurd since these functions are concave.
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Corollary 6.6.1 Let Φ and Ψ ∈ Yconc be arbitrary. Then among the following three
assertions exactly one fulfills:

1. {x ∈ [0, ∞) : Φ (x) = Ψ (x)} = [0, ∞) .

2. {x ∈ (0, ∞) : Φ (x) 6= Ψ (x)} = (0, ∞) .

3. There is a unique number x∗ ∈ (0, ∞) with Φ (x∗) = Ψ (x∗) such that

{x ∈ (0, ∞) \ {x∗} : Φ (x) 6= Ψ (x)} = (0, ∞) \ {x∗} .

Lemma 6.6.4 Let Φ and Ψ ∈ Yconc be arbitrary. Then in order that Φ (x) = Ψ (x) for
all x ∈ [0, ∞) it is necessary and sufficient that

∫

[0,∞)

(Φ−Ψ)2 dµ = 0.

Proof. We first note that the sufficiency is obvious. To show the necessity let us
assume that ∫

[0,∞)

(Φ−Ψ)2 dµ = 0.

Then on the one hand µ ({x ∈ [0, ∞) : Φ (x) = Ψ (x)}) = µ ([0, ∞)) = 1
3

so that neces-
sarily
{x ∈ [0, ∞) : Φ (x) = Ψ (x)} 6= ∅. On the other hand

µ ({x ∈ (0, ∞) : Φ (x) 6= Ψ (x)}) = 0.

Note that both the sets {x ∈ [0, ∞) : Φ (x) = Ψ (x)} and {x ∈ (0, ∞) : Φ (x) 6= Ψ (x)}
cannot be non-empty at the same time (because of Corollary 6.6.1). Consequently,

{x ∈ (0, ∞) : Φ (x) 6= Ψ (x)} = ∅

and, therefore, {x ∈ [0, ∞) : Φ (x) = Ψ (x)} = [0, ∞).
We are now in the position to state the result hereby.

Proposition 6.6.1 The mapping d : Yconc × Yconc → [0, ∞), defined by

d (Φ, Ψ) =

√∫

[0,∞)

(Φ−Ψ)2 dµ =

√∫ ∞

0

(Φ (x)−Ψ (x))2

(x + 1)4 dx,

satisfies the metric axioms, i.e. for any three functions Φ1, Φ2 and Φ3 ∈ Yconc

1. d (Φ1, Φ2) ≥ 0 and d (Φ1, Φ2) = 0 if and only if Φ1 = Φ2.

2. d (Φ1, Φ2) = d (Φ2, Φ1).

3. d (Φ1, Φ2) ≤ d (Φ1, Φ3) + d (Φ3, Φ2).
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The pair (Yconc, d) is a metric space and hence by referring to Theorem C the pair
(A, d) is also a metric space.

Theorem 6.6.2 Let Φ ∈ Yconc and write Φn = Φn/(n+1), n ≥ 1. Then

lim
n→∞

∫

[0,∞)

Φ2
ndµ =

∫

[0,∞)

Φ2dµ.

Proof. For every index n ≥ 1, define Φ∗
n := (Φn (1))−1 Φn. Clearly, (Φn) ⊂ Yconc

(see Corollary 6.4.1) and hence (Φ∗
n) ⊂ A because of Lemma 6.4.1. Via Theorem 6.6.1 it

follows that sequence (Φn) converges to Φ pointwise, which in turn entails that sequence
(Φ∗

n) converges to (Φ (1))−1 Φ pointwise. Write the function Z (x) := x + 1, x ∈ [0, ∞).
We obtain (by Lemma 6.4.3) that

sup
n≥1

Φ∗
n (x) ≤ S (x) ≤ Z (x) , x ∈ [0, ∞) .

Now, on the one hand a simple computation shows that Z ∈ L2. On the other hand
we can deduce from Lemma 6.6.2 that (Φn) ⊂ L2 and thus (Φ∗

n) ⊂ L2. Therefore, the
Dominated Convergence Theorem guarantees that

lim
n→∞

∫

[0,∞)

Φ∗2
n dµ = (Φ (1))−2

∫

[0,∞)

Φ2dµ.

Now we remark that for every index n ≥ 1,

∫

[0,∞)

Φ2
ndµ = (Φ (1))2

∫

[0,∞)

Φ∗2
n dµ.

Passing to the limit we can conclude that

lim
n→∞

∫

[0,∞)

Φ2
ndµ =

∫

[0,∞)

Φ2dµ.

This was to be proven.

Theorem 6.6.3 The subset A is a dense set in Yconc.

Proof. Let Φ ∈ Yconc be arbitrary. For every index n ≥ 1, define Φ∗
n := (Φn (1))−1 Φn,

where Φn = Φn/(n+1). We need to prove that

lim
n→∞

d (Φ, Φn) = lim
n→∞

∫

[0,∞)

(Φ− Φn)2 dµ = 0.

In fact, fix arbitrarily an index n ≥ 1. Then

∫

[0,∞)

(Φ− Φn)2 dµ =

∫

[0,∞)

Φ2
ndµ +

∫

[0,∞)

Φ2dµ− 2

∫

[0,∞)

ΦΦndµ. (42)
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Then Lemma 6.4.3/4 entails that

(Φ (1))−(2n+1)/(n+1) ΦΦn ≤ Z(2n+1)/(n+1) ≤ Z2,

since function Z (x) ≥ 1 for all x ∈ [0, ∞) and sequence

(
2n + 1

n + 1

)
tends increasingly to

2. On the other hand

lim
n→∞

(Φ (1))−(2n+1)/(n+1) Φ (x) Φn (x) = (Φ (1))−2 Φ2 (x)

for all x ∈ [0, ∞). Then by means of The Dominated Convergence Theorem it follows
that

lim
n→∞

∫

[0,∞)

ΦΦndµ = lim
n→∞

(Φ (1))(2n+1)/(n+1)

∫

[0,∞)

(Φ (1))−
2n+1
n+1 Φ

2n+1
n+1 dµ (43)

=

∫

[0,∞)

Φ2dµ.

Finally we note that

lim
n→∞

∫

[0,∞)

Φ2
ndµ =

∫

[0,∞)

Φ2dµ, (44)

by Theorem 6.6.2. Therefore, combining the results (42)–(44), we get limn→∞ d (Φ, Φn) =
0. We can thus conclude on the validity of the theorem.
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CHAPTER VII

SOME COMPUTATIONAL ASPECTS

Optimal measure theory can be applied in many fields such as genetic algorithms, neural
network, computer algebra, artificial intelligence and it can be used to substitute the
Sugeno integral.

7.1 Algorithmic determination of optimal measure

from data

In fuzzy sets theory the crux was how to determine the values of the fuzzy measure in
a given real problem. To achieve that goal the Sugeno integral was used alongside the
so-called genetic algorithm to solve it (see [66]), say. The Sugeno integral with respect
to a given fuzzy measure µ is regarded as a multi-input single-output system. The input
is the integrand, i.e. the vector (f (ω1) , . . . , f (ωn)), while the output is the value of its

Sugeno integral E := (S)

∫
fdµ = sup {α ∧ µ (Fα) : α ∈ [0, 1]}, where f is a measurable

function defined on a finite measurable space (Ω, F) and Fα := {ω ∈ Ω : f (ω) ≥ α}. By
repeatedly observing the system (f (ω1) , . . . , f (ωn)) results the following

f11 (ω1) f12 (ω2) . . . f1k (ωn) E1

f21 (ω1) f22 (ω2) . . . f2k (ωn) E2
...

...
...

...
fk1 (ω1) fk2 (ω2) . . . fkk (ωn) Ek

and we look for an approximate fuzzy measure µ with Ei = (S)

∫
fidµ, (i = 1, . . . , k),

such that the expression

e :=

√
1

k

∑k

i=1

(
Ei − (S)

∫
fidµ

)2

is minimized. For more about the genetic algorithm see [41], for example.
An analogical crucial question also arises to know how to determine the range of the

optimal measure in a real problem. We shall first formulate some useful problems.

Problem 1 Let (Ω, F) be the measurable space with Ω = {1, . . . , n} and F = 2Ω, i.e.
F is the power set of Ω. Write B1 := {1} , . . . , Bn := {n} and let f be a random variable
assuming the theoretical values in [0, ∞). Observe k times this measurable function with
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results f1, . . . , fk, i.e.

B1 B2 . . . Bn

f1 (1) f1 (2) . . . f1 (n) Q1

f2 (1) f2 (2) . . . f2 (n) Q2
...

...
...

...
fk (1) fk (2) . . . fk (n) Qk

where Qi =
1

n

n∑
j=1

fij with fij := fi (j), j = 1, . . . , n, and i = 1, . . . , k. The question

is to know which one of these sample averages can ”best” approximate the theoretical
mathematical expectation.

To solve Problem 1 we propose to look for an approximation of the theoretical optimal

measure p for which

\
Ω

fidp ≈ Qi, (i = 1, . . . , k), such that the expression

err :=

√∑k

i=1
ε2

i =

√√√√√∑k

i=1


Qi −

\
Ω

fidp




2

is minimized. Write p∗ for the optimal measure p for which the least square is minimal.

Now, it is not difficult to see that
∨k

i=1

∣∣∣∣Qi −
\

Ω

fidp∗

∣∣∣∣ < err. Let i0 be the index where

the maximum is attained, i.e.
∣∣∣∣∣∣
Qi0 −

\
Ω

fi0dp∗

∣∣∣∣∣∣
=

∨k

i=1

∣∣∣∣∣∣
Qi −

\
Ω

fidp∗

∣∣∣∣∣∣
.

Then we can conclude that with respect to the optimal measure p∗ the i0th sample provides
us with the best possible sample average.

As we know statistical spaces are not restricted in general to the real line nor to the
real vector spaces. For this reason we need to formulate the following problem. We shall
then indicate how to reduce Problem 2 to Problem 1.

Problem 2 Let (X, S) be measurable space with S being an arbitrary σ-algebra. Fix a
partition D1, . . . , Dn of X and consider a random variable h : X → [0, ∞), assuming
theoretical values. Observe k times this measurable function with the following results :

D1 D2 . . . Dn

h11 h12 . . . h1n Q1

h21 h22 . . . h2n Q2
...

...
...

...
hk1 hk2 . . . hkn Qk
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where hij is the observed value of h in the ith trial on event Dj, i = 1, . . . , k; j = 1, . . . , n,

and Qi =
1

n

n∑
j=1

hij, i = 1, . . . , k.

The question is to know which one of these sample averages can ”best” approximate the
theoretical mathematical expectation of h.

To solve Problem 2, first write S0 := σ (D1, . . . , Dn). We note that S0 is a finite
σ-algebra and the random variable h is also S0-measurable. Clearly, S0 and 2Ω are equinu-
merous, where Ω = {1, . . . , n}. Then Problem 2 can be reduced to Problem 1 if we define
fij := hij, i = 1, . . . , k; j = 1, . . . , n.
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An algorithm to solve the first problem

Step 0.

Input: n positive integer
Ω = {1, . . . , n}
k × n matrix F = [f(i, j)]n, k

i, j=1

n-dimensional vector Q
error bound ε
Bj = {j}, j = 1...n
X = the power set of Ω.
Generate the set σ of all permutations of {1, ..., n}.

Step 1.

Generate a decreasing sequence α(j) ∈ (0, 1], with α(1) = 1.

Step 2.

For any permutation {n1, ..., nn} ∈ σ
Put p (Bj) = α(nj), for j = 1, ..., n
Compute the optimal average: A(i) = max{f(i, j) ∗ p (Bj) : j = 1...n},

for i = 1..k

Compute the corresponding error: err =

√(∑n
j=1 (Q(i)− A(i))

)2

Step 3.

If err < ε for some permutation do
Find the index i0 such that |Q(i0)− A(i0)| = max{|Q(i)− A(i)| : i = 1...k}
Determine p (B) = max {α(nj) : j ∈ B}, for each B ∈ X
Else GOTO Step 1

Step 4.

The outputs
1.) Best sample: f (i0, 1) , . . . , f (i0, n)
2.) The approximated optimal measure:

2Ω p (B)
{} 0
B1 p (B1)
...

...
Bi p (Bi)
...

...
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7.2 A Maple codes solution of Problem 1
> with(combinat):
with(stats):
with(VectorCalculus):
st:=time():
jobbminta:= proc(k,n,epsz)
local i,j,vel,per,lepes,err1;
global Omega,A,B,X,S,F,alpha,Q,err,p,mertek,i_0,halmazmertek;
Omega:={};
halmazmertek:=array(1..2^n,1..2);
for i from 1 to n do
Omega:=Omega union {i};
od;
S := subsets(Omega):
i:=1;
while not S[finished] do
X[i]:=S[nextvalue]();
i:=i+1:
od;
F:=array(1..k,1..n);
for i from 1 to k do
for j from 1 to n do
F[i,j]:=abs(stats[random, normald](1));
od:
od;
print(‘Az F mátrix:‘); print(F);
for j from 1 to n do
B[j]:=j;
od;
Q:=array[1..k];#vector[k];
for i from 1 to k do
Q[i]:=0;
for j from 1 to n do
Q[i]:=Q[i]+F[i,j]/n;
od;
od;
print(‘Az F mátrix sorainak átlaga, azaz a Q vektor:‘); print(Q);
err1:=10000000;
while (err1>epsz) do
alpha:=[1,op(sort(RandomTools[Generate](list(float(range=0..1),
n-1)),‘>‘))];
lepes:=1;
err1:=10000000;
print(‘Az alpha értéke:‘); print(alpha);
while (err1>epsz and lepes<=n!) do
per:=permute(n)[lepes];
for j from 1 to n do
p[j]:=alpha[per[j]];
od; for i from 1 to k do
for j from 1 to n do
if j=1 then A[i]:=F[i,j]*p[j];
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else if A[i]<F[i,j]*p[j]
then A[i]:=F[i,j]*p[j];
fi;
fi;
od;
od;
err:=0;
for i from 1 to k do
err:=(Q[i]-A[i])^2;
od;
err:=sqrt(err);
lepes:=lepes+1;
if err1>err then err1:=err; fi;
od;
print(‘Ehhez az alpha-hoz tartozó hiba:‘);print(err1);
od;
print(‘A permutáció, amely az optimális értéket adta:‘); print(per);
i_0:=1;
for i from 2 to k do
if abs(Q[i]-A[i])>abs(Q[i_0]-A[i_0]) then i_0:=i; fi;
od;
print(‘Az i_0 értéke:‘);print(i_0);
for i from 1 to 2^n do
mertek:=0;
for j from 1 to n do
if j in X[i] then mertek:=max(mertek,p[j]); fi;
od;
halmazmertek[i,1]:=X[i];
halmazmertek[i,2]:=
mertek;
od;
print(‘A halmazokra kapott mértékek:‘);print(halmazmertek);
print(‘A futási ido:‘); time()-st;
end;
> jobbminta(3,4,0.02); Az F mátrix:



1.315575422 0.4312628907 0.3691538117 1.987882081

0.3806605310 1.213901996 2.020635570 1.033761787

0.8287258064 1.058650159 0.3007036528 0.6182133403




Az F mátrix sorainak átlaga, azaz a Q vektor:

TABLE ([1 = 1.025968551, 2 = 1.162239971, 3 = 0.7015732397])

Az alpha értéke:

[1, 0.8632200803, 0.000009418418783, 0.0000000009175679917]

Ehhez az alpha-hoz tartozó hiba:

0.01379951740

A permutció, amely az optimális értéket adta:
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[2, 3, 1, 4]

Az i0 értéke:

2

A halmazokra kapott mértékek:


{} 0

{1} 0.8632200803

{2} 0.000009418418783

{3} 1

{4} 0.0000000009175679917

{1, 2} 0.8632200803

{1, 3} 1

{1, 4} 0.8632200803

{2, 3} 1

{2, 4} 0.000009418418783

{3, 4} 1

{1, 2, 3} 1

{1, 2, 4} 0.8632200803

{1, 3, 4} 1

{2, 3, 4} 1

{1, 2, 3, 4} 1




A futási idő:

1.812
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7.3 Algorithm for finding the degree of contraction

and the positive fixed point

Let be given a concave Young function Φ and a positive number cc in the neighborhood
of 0.
Step 1. Input Φ (x) , cc
Step 2. Compute the derivative ϕ (x) of Φ (x).
Step 3. Starting from cc find an approximation root for

equation ϕ (x)− 1 = 0 and put the result into c.
Step 4. If c = 0 then STOP.

else GOTO Step 5.
Step 5. Starting from c apply the FixedPoint algorithm, i.e.

x0 := c; xk+1 := Φ (xk) ; k = k + 1.

7.4 A Maple program for computing the degrees of

contraction and the positive fixed point
> restart;
> t:=array(1..3,1..4): t[1,1]:=’k’: t[1,2]:=’c’: t[1,3]:=’ido’:
t[1,4]:=’fixpont’:
Input section

> for k from 2 to 3 do
Phi[k-1]:=x-> (k^(k+1)*x)^(1/(k+2))+(k-1)*(log(x+k)-log(k));
od:
The computation of the derivatives

> for k from 2 to 3 do
phi[k-1] :=diff(Phi[k-1](x),x);
psi[k-1] :=D(Phi[k-1]);
od:
The computation of the h(x):=phi(x)-1 and the function indexes

> for k from 2 to 3 do
h[k-1] :=phi[k-1]-1;
t[k,1]:=k-1;
od:
The degree of contraction can be obtained as a possible approximated root of function
h(x):=phi(x)-1. To do this the bisection method (intervallum-felező eljárás, in Hun-
garian) is rather preferable to Newton and other methods, say. Because differentiating
twice the above two functions can be fatal in terms of time period. The subroutine
for these approximations is as follows:

> bisect :=proc(fun,x0,x1,max,delta)
local k1,halff,p0,p1,p2,a,b;
k1 := 0: a:=x0;b:=x1:
#while er>delta do
halff:=(a+b)/2:
p0 := evalf(subs(x=a,fun)):
p1 := evalf(subs(x=b,fun)):
p2 := evalf(subs(x=halff,fun)):
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for k1 from 1 to max do
if (evalf(p0*p2)<0) then
b:=halff:
else
a:=halff:
end if:
halff:= (a+b)/2:
p0 :=evalf(subs(x=a,fun)):
p1 := evalf(subs(x=b,fun)):
p2 := evalf(subs(x=halff,fun)):
end do:
RETURN(halff):
end proc:
> for k from 2 to 3 do
w[k-1]:=plot({Phi[k-1](x)},x=0..30,color=black):
PP[k-1]:=evalf(subs(x=20+1.5,Phi[k-1](x))):
od:
wx:=plot(x,x=0..30,color=red):
> with(plots):
for k from 2 to 3 do
u[k-1]:=textplot([20,PP[k-1],‘Phi(x)‘],align={BELOW,RIGHT}):
od:
ux:=textplot([20,20,‘y =x‘],align={BELOW,RIGHT}):
for k from 2 to 3 do
display({wx,w[k-1],ux,u[k-1]};
od;
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Figure 1: The joint plot of Φ1 (x) and the line y = x.

>

> for k from 2 to 3 do st:= time():
c[k]:=bisect(h[k-1],0.00000002,20,40);
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Figure 2: The joint plot of Φ2 (x) and the line y = x.

ido[k]:=time() - st; t[k,2]:=c[k]; t[k,3]:=ido[k];
od:
Algorithm to compute the approximation of the fixed point.

> fixedpoint := proc(x0,max,k,t)
local k1,p0,p1;
k1 := 0;
p0 :=evalf(x0);
printf(" P%g = %g \n",k1,p0);
p1 := p0;
for k1 from 1 to max do
p0 := evalf(p1);
p1 := g(p0);
printf(" P%g = %g \n",k1,p1);
end do;
print(‘g(x) = ‘,g(x));
printf(" P = %g \n",p1);
printf("g(P) = %g \n",g(p1));
t[k,4]:=evalf(p1); RETURN(p1);
end:
Starting with x0 = c we compute the approximation of the fixed point, where phi(c)
= 1

> for k from 2 to 3 do
g:= unapply(Phi[k-1](x),x):
fixedpoint(c[k],10,k,t):
od:
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Φ1 (x) = (8x)1/4 + ln (x + 2)− ln 2 Φ2(x) = (81x)1/5 + ln (x + 3)2 − ln 9
P0 = 0.601473 P0 = 0.96497
P1 = 1.744000 P1 = 2.94888
P2 = 2.559690 P2 = 4.35889
P3 = 2.95136 P3 = 5.02734
P4 = 3.11085 P4 = 5.29481
P5 = 3.17175 P5 = 5.39502
P6 = 3.19445 P6 = 5.43167
P7 = 3.20283 P7 = 5.44495
P8 = 3.20592 P8 = 5.44975
P9 = 3.20705 P9 = 5.45148
P10 = 3.20747 P10 = 5.45211

>

In the following table the colunms contains respectively the indexes, the solution of
phi(c)=1, the time needed to obtain c as well as the fixed point of the functions

> print(t);




4 c ido fixpont

1 0.6014731621 0.016 3.207470869

2 0.9649698547 0.031 5.452106877




>

Comparison of the distance between the images of two points with a constant multiple
of their distance

> for k from 2 to 3 do
#cc:=0.06:
#print(k-1);
plot3d(psi[k-1](c[k])*abs(x-y), x = c[k] .. 50,
y = c[k] ..50,axes=BOXED):
plot3d(abs(Phi[k-1](x)-Phi[k-1](y)),x = c[k] .. 50,
y = c[k] .. 50,axes=BOXED):
plot3d([abs(Phi[k-1](x)-Phi[k-1](y)), psi[k-1](c[k])*abs(x-y)],
x= c[k] .. 50, y = c[k] .. 50,axes=BOXED):
od;

>

Comparison of the differential rate with the appropriate value of the derivative

> for k from 2 to 3 do
plot3d(psi[k-1](c[k]), x = c[k].. 50, y = c[k] .. 50,axes=BOXED):
plot3d(abs((Phi[k-1](x)-Phi[k-1](y))/(x-y)), x = c[k] .. 50,
y =c[k] .. 50,axes=BOXED):
plot3d([abs((Phi[k-1](x)-Phi[k-1](y))/(x-y)), psi[k-1](c[k])],
x =c[k] .. 50, y = c[k] .. 50,axes=BOXED):
od;
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Figure 3: Plot of c1 |x− y|
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Figure 4: Plot of the distance |Φ1 (x)− Φ1 (y)| .
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Figure 5: The plot of the above two configurations.
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Figure 6: Plot of ϕ1 (c1) and plot of the ratio |Φ1(x)−Φ1(y)|
|x−y| .
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