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Chapter 1

Introduction

The dissertation examines a possible interconnection between two apparently distant

branches of artificial intelligence (AI): ontology and rule induction. Recently, ontology

gains an ever-wider range of applications, mainly in areas where the use of semantic infor-

mation is presumably benefitial. Statistical rule induction is devoted to find characteristic

or frequent rule sets. We have an intuition that the idea of combining statistical approaches

with semantics in rule learning is advantageous concerning the efficiency and accuracy of

the learning algorithms, so it is worth investigating. The motivation for accommodating

the research in a grammar induction framework is the fact that symbolic languages have

the most complex systems of rules (grammars), therefore they must be considered when

developing a general methodology for rule learning.

1.1 Preliminaries

1.1.1 Ontology and its applications

Most computers today are connected in networks to share data, information and know-

ledge. Due to the overwhelming amount of information that is continually being generated,

effective processing and use or reuse of knowledge is essential. Therefore researchers in AI

first developed ontologies to facilitate sharing, processing and reuse of knowledge.

The term ’ontology’ in philosophy is the science of what is, of the kinds and structures

of objects, properties and relations in every area of reality. According to a widely ac-

cepted definition for ontology in information science, ”an ontology is a formal, explicit

specification of a shared conceptualization” [Gruber, 1993]. In this context, conceptual-

ization refers to an abstract model of some phenomenon in the world that identifies that

phenomenon’s relevant concepts. Explicit means that the type of concepts used and the

constraints on their use are unambiguously defined, and formal means that the ontology

should be machine understandable. Shared reflects the notion that an ontology captures

consensual knowledge – that is, it is not restricted to some individual but is accepted by

a group.

When two agents need to communicate or exchange information, the prerequisite is that a

consensus has to be formed between them. Ontologies are specifically designed to provide
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the common semantics for agent communication. In order to be able to play this impor-

tant role a joint standard needs to be developed for specifying and exchanging ontologies.

Therefore researches in ontology are aimed, on the one hand, at defining a standard onto-

logy language, and on the other, at developing tools and methods for ontology design and

verification, and finally at creating ontology libraries.

Since the beginning of the 1990s, ontologies have become a popular research topic, and

several AI research communities – including knowledge engineering, natural language pro-

cessing, and knowledge representation – have investigated them. More recently, the notion

of ontology is becoming widespread in fields such as information integration and retrieval,

and knowledge management. Ontologies are becoming popular largely because of what

they promise: a shared and common understanding that reaches across people and ap-

plication systems.

1.1.2 Rule induction

Rule induction (see [Rückert, 2008] for details) is a popular learning scheme in machine

learning. This branch of AI aims to provide computational methods for improving the

performance of knowledge acquisition from experimental data by discovering and exploit-

ing regularities. Generally speaking, the task of a learner (computer program) is to induce

a predictive model from the training data whose predictions are as accurate as possible

while being comprehensible for humans.

In traditional rule induction, knowledge exploited is stored in condition-action symbolic

structures (if-then rules). As long as the rule set is not too large and the rules are not

too complicated, the result can be easily understood and analyzed by humans. For that

reason, small (i.e. simple) rule sets are considered to be among the best comprehensible

and interpretable representations in machine learning. A major issue concerning rule in-

duction is the determination of the learner’s complexity. Overfitting happens whenever

the model induced is expressive enough to incorporate noisy or random patterns which

appear in the training data, but are not present in the underlying data generation process.

In order to avoid overfitting the expressive power of the rule set must be restricted. On the

other hand, if the rule set induced is very simple, it may not be able to catch all important

regularities and it might be characterized by bad predictive accuracy.

In typical machine learning applications the experimental data are very often imperfect

or noisy, which means that the available information is generally too sparse to draw jus-

tified deductive conclusions. Hence, many machine learning systems rely on statistical

and probabilistic methods, which can express the randomness and the probabilities of the

events and decisions involved. Early works on statistical rule induction were aimed at

finding algorithms that are provably predictive for large training sets; while the probably

approximately correct (PAC) learning framework [Valiant, 1984] also considers the time

complexity of computing model representations.
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A different approach to statistical inference has been followed by Bayesian statistics. From

this perspective, the main goal is to find an algorithm that predicts well on unseen data,

that is its accuracy on the test set is maximal, or in other words, the test error is minimal.

Unfortunately, at learning time neither the test data, nor the underlying distribution are

known, so the error cannot be optimized directly, based on the training set. Therefore,

instead of aiming for an algorithm with low test error, the original problem can be refor-

mulated as finding an algorithm that has low true error on the training data. In practice,

however, the true error can never be obtained, because the underlying distribution is un-

known. Only an estimation can be given for the distribution from a (preferably large) test

set. Another disappointing result is that there is no guarantee that a certain finite training

set size leads to algorithms with reasonably low true error; namely the Bayes error can

only be achieved in the limit.

Theoretically, the crux of machine learning is to find algorithms whose biases match well

with the learning problems that are frequently encountered in practice. However, the

experimental results show that rather than looking for the ’universally best’ learning al-

gorithm, one should search for an algorithm whose bias matches well with the learning

problem at hand, in order to achieve good performance.

1.2 Aims and scope

The main motivation for the research is to develop a new general rule learning methodology

that alloys statistics with semantics. With that, our aim is to improve the performance

of statistical rule induction by utilizing semantic information in the learning process. The

actual learning problem is chosen to be grammar induction, because symbolic languages

have the most complex systems of rules (grammars), so they must be considered when

developing a general methodology. In grammar induction, the aim is to learn the formal

grammar generating the language of the input data. Accordingly, the general schema of

the grammar induction system (or agent) investigated can be found in Figure 1.1.

Semantic
signals

Semantic
signals

Symbolic descr.Symbolic descr.

Internal 
semantic

model

Internal 
semantic

model

Local
grammar

Local
grammar

TudásbázisTudásbázisTudásbázisTudásbázis
Internal

knowledge
base

Internal
knowledge

base

NyelvtanNyelvtanNyelvtanNyelvtanGrammarGrammar

Pattern

recognition

Assignment

Association

Generalization

Grammar induction system

Figure 1.1 Schematic description of the grammar induction system investigated

The dissertation covers the first phase in the development of the system outlined in Figure

1.1, that is the specification and deep examination of an appropriate semantic representa-

tion optimized for grammar induction.
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The capabilities of the grammar learning agent are fixed in advance, which are

1. pattern recognition: the ability to recognize the objects of its direct environment

and their relations;

2. association: the ability of relating pieces of information based on its stored know-

ledge; and

3. generalization: the ability of creating abstract concepts by extracting the common

characteristics of existing knowledge items.

In order to be able to achieve these tasks, the learning agent needs a semantic representa-

tion model that satisfies the following basic requirements:

– its main building blocks should be concepts and their relationships,

– it should be predicate-centered, where predicate is a type of concept,

– it should have an apriori knowledge regarding the model elements,

– it should make a clear distinction between apriori and learned elements,

– it should reflect the multi-layered nature of conceptualization, and

– it should provide high levels of flexibility and extendibility.

A semantic model satisfying the above requirements can be considered as an ontology

representation language. Thus, in the system examined ontologies are in the first place

used for semantic annotation, and secondly as the representation of the knowledge base

of the grammar induction system.

In the field of ontology-based semantic annotation the interest of researchers has arisen

only in recent years, mainly in connection with the semantic web [Berners-Lee et al., 2001]

and is oriented towards the automatic creation of semantic annotation for web documents.

These projects require an upper ontology that defines the taxonomy of concepts in a prob-

lem domain. The process of annotation is realized by finding matching ontology concepts

and words in documents. The distinguishing feature of this project is the annotation

method, namely symbolic language sentences are annotated with instance-level ontologies.

In the field of grammar induction, only one project is found that uses ontology as a repos-

itory of semantic knowledge supporting the inference of a constraint-based grammar (see

Section 2.3.4 on page 26). This attempt is again an example of word-based semantic de-

scription, while the aim of the present research is to support the automatic learning of

symbolic language sentence units (word sequences) and their ordering.

Therefore, based on the available literature, the present research can be considered as a

novel approach to grammar induction, a novel approach to semantic annotation, and also

a novel approach to the application of ontologies.
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Ontologies play an important role in semantic modeling. However, at present there does

not exist a general graphical format for their representation. Other researches in the liter-

ature use existing conceptual models for this purpose. The comparative analysis of these

graphical semantic models also forms part of the present research in view of the question

whether they are suitable for representing the knowledge base of the modeled grammar

induction system. Section 2.2.4 on page 18 exposes the results of this analysis with the

conclusion that all the examined existing conceptual models have some shortcomings con-

cerning the actual task. Accordingly, the tasks to be solved during the completion of the

project can be summarized in the following points.

1. The first task of the research is to develop a semantic model for graphical knowledge

(ontology) representation that fulfils the requirements declared for the actual task;

as well as the analysis of its expressive power.

2. The second task is to find an appropriate grammar formalism that is able to represent

the semantic model developed and its symbolic language description jointly, in a

common framework, in support of the training of the grammar induction system

modeled.

3. The third task is to describe how the knowledge base of the grammar induction

system examined builds up. This means the modeling of the process of conceptual-

ization within the semantic model introduced.

4. Finally, a test system should be implemented for the verification of the theoretical

results.

1.3 Dissertation guide

Following the tasks to be solved, the dissertation consists of the following chapters.

Chapter 2 gives a thorough introduction to the topic of the dissertation through the

examination of the information processing model of agents. In this process the first stage

to be studied is conceptualization, the second is knowledge representation and the third is

grammar learning. Within the field of knowledge representation, special attention is paid

to ontologies and the forms of their specification. This chapter also includes a comparative

analysis of the applicability of existing graphical conceptual models in the present research.

In connection with grammar induction, the techniques and problems of the creation and

use of semantic annotation are in the focus of the discussion.

Chapter 3 exposes the development of a novel semantic model, which is designed to

fulfil the declared requirements of the knowledge representation format in the grammar

induction system investigated. The chapter starts with the analysis of how much expressive

power is needed for the problem at hand. The result is that first-order predicate logic is

too restricted, and also higher-order predicate logic needs some extensions. With these

extensions, the new semantic model is defined in two forms: it has a logic-based and a

graphical representation, and is named Extended Conceptual Graph (ECG).

5



Chapter 4 aims at finding a grammar formalism that is able to represent the semantic

model developed and its symbolic description in a common framework. The new formalism

introduced is an edge-labeled lexicalized tree-based representation combining the levels of

semantics and syntax. The semantic level is constructed from ECG diagram graphs, where

the nodes correspond to ECG concepts and the edges represent ECG relationships. At the

symbolic level the nodes include the word sequences assigned to ECG concepts, while the

edges are labeled by precedence relations representing the order of the word sequences in

the corresponding symbolic sentence. Thus, the symbolic level encodes word order locally

and discontinuous constructions are represented by sibling nodes. This formalism supports

the learning of the association rules between the syntactic and semantic levels of language,

therefore it makes the generation of a symbolic grammar possible.

Chapter 5 models the processes of conceptualization – association, abstraction and gen-

eralization – using ECG diagram graphs. Association is defined as the incorporation of

new information elements into the knowledge base, which raises the problem of match-

ing ECG diagram graphs. The matching problem poses several questions concerning the

aspects of comparing ECG diagram graphs and their elements. In support of these com-

parisons, lattices are defined for storing concept generalization structures. Abstraction and

generalization are implemented in one operation, embedded in the association algorithm,

that is defined as the process by which new ECG concepts are created in the knowledge

base incorporating frequently occuring existing concepts. The two operations (association

and generalization) together accomplish the process of conceptualization, at the idealized

end of which stands the generalized accumulated ECG diagram graph (representing the

knowledge of the learning agent) built up from a set of primary-level ECG diagram graphs.

Chapter 6 introduces the test system implemented in which two applications of the ECG

model are demonstrated: the generation of the set of semantically annotated training sam-

ples, and the simulation of the conceptualization process on this data set.

Chapter 7 summarizes the new scientific results achieved during the completion of the

project. It also gives some application areas of the results, and outlines the directions of

future investigations.
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Chapter 2

Background

The ability of computers to process language as skillfully as we do will signal

the arrival of truly intelligent machines.

D. Jurafsky and J.H. Martin: Speech and Language Processing (2000), Prentice Hall

Ontology, knowledge representation, grammar induction and agent technology are all con-

cepts used in AI. According to a general definition, ”an agent is anything that can be

viewed as perceiving its environment through sensors and acting upon that environment

through effectors” [Futó, 1999]. The goal of the research is to study a human agent who ob-

serves signals from the environment and after processing the information received, is able

to express its perceptions with linguistic symbols (see Figure 2.1). For the examination

of this information processing model the following intermediate stages should be studied:

the process of conceptualization, the representation of knowledge, and its mapping to a

symbolic language. This latter stage requires the knowledge of the given language: vocab-

ulary and grammar rules for building expressions, which is the result of a learning process.

In the following sections, these stages are discussed in detail.

NL SymbolsNL Symbols

Signals

WorldWorld

Human agent

     Perception & Inf. processing     Perception & Inf. processing

Actuation

Figure 2.1 Information processing model of human agents

2.1 The process of conceptualization

The study of signs, called semiotics (or semiology), was developed independently by the

Swiss linguist, Ferdinand de Saussure and by the American logician and philosopher

Charles Sanders Peirce. The term comes from the Greek sêma (sign). Saussure saw

the new science as a ”science which studies the life of signs at the heart of social life”.
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Peirce extended this definition, and described semiotics as the science that studies the use

of signs by ”any scientific intelligence”. By that term, he meant ”any intelligence capable

of learning by experience”, including animal intelligence and even mindlike processes in

inanimate matter [Sowa, 2000b], [Sowa, 2006]. How understanding evolves from signs of

objects can be demonstrated by a triangle, which has a long history going back to as far as

Aristotle. He distinguished objects, the words that refer to them, and the corresponding

experiences in the psyché. Peirce (1867) adopted that three-way distinction from Aristotle

and used it as the semantic foundation for his system of logic.

In Peirce’s theory [Hartshorne et al., 1958] a sign is defined as the signifier of an object

in the world, while interpretant is considered as the understanding that we have of the

sign-object relation. The importance of the interpretant for Peirce is that signification is

not a simple dyadic relationship between sign and object: a sign signifies only in being

interpreted. This makes the interpretant central to the content of the sign, in that the

meaning of a sign is manifested in the interpretation that it generates in sign users. In

his final account (1906-10), Peirce found parallels between the semiotic process and the

process of inquiry, which is an end-directed process. Depending on the stages of the semi-

otic process, he distinguished different types of objects and interpretants. Peirce made

a distinction between the object of the sign as we understand it at some given point in

the semiotic process (immediate object Oi), and the object of the sign as it stands at

the idealized end of the process (dynamic object Od). Therefore, the immediate object is

not an additional object distinct from the dynamic object but is an informationally in-

complete copy of the dynamic object generated at some interim stage in the chain of signs.

IfIf

Id(2)Id(2)

Id(1)Id(1) Oi(2)Oi(2)

SignSign Oi(1)Oi(1) OdOd

. . .

Figure 2.2 Peirce’s final account of the semiotic process [Hartshorne et al., 1958]

At the same time, Peirce identifies three different ways in which we grasp a sign’s standing

for its object. The immediate interpretant Ii is a general, definitional understanding of

the sign. The dynamic interpretant Id, on the other hand, is our understanding of the

sign at some actual instance in the semiotic process (the ”effect actually produced on the

mind”). Thus it provides an incomplete understanding of Od, while an Oi in the sign chain

consists of the dynamic interpretants from earlier stages. The final interpretant If , then,

is what our understanding of the dynamic object would be at the end of inquiry, that is, if

we were to reach a full and true understanding of the dynamic object. These three types

of interpretants were introduced on the basis of the three levels of understanding (grades

of clarity). That is, a full understanding of some concept involves 1) familiarity with it in
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day-to-day encounters, 2) the ability to offer some general definition of it (logical analysis),

and 3) knowing what effects to expect from holding that concept to be true (pragmatic

analysis). Accordingly, dynamic interpretant Id corresponds to the 1st grade, immediate

interpretant Ii corresponds to the 2nd grade, while final interpretant If corresponds to the

3rd grade of clarity [Atkin, 2007]. Figure 2.2 shows a detailed form of Peirce’s final account

of the semiotic process. The dashed lines between the interpretants and the objects reflect

the implicit nature of these relations.

On the basis of Peirce’s theory, Ogden & Richards drew their meaning triangle in 1923

[Ogden & Richards, 1923], which is a model of how linguistic symbols are related to the

objects they represent. In the model the components of the process of understanding in-

clude: referents, that are the ”objects that are perceived and that create the impression

stored in the thought area”; symbol, that stands for ”the word that calls up the referent

through the mental processes of the reference”; and reference (or thought) which ”indicates

the realm of memory where recollections of past experiences and contexts occur”. Thus,

the meanings of words are determined by the past (and current) experiences of speakers

who encounter these words in specific contexts. Since speakers interpret words with a

background of unique experiences, each and every speaker is bound to interpret the same

word in a unique and different way; that is speakers have different references for the same

symbol. This definition implies that the referent of a symbol is relative to different speak-

ers. As a consequence, in the semiotic triangle of Ogden & Richards there is no direct

connection between the referent (object in the world) and the symbol. Figure 2.3 shows

the difference between Peirce’s and Ogden & Richards’ approaches to semiotics.

InterpretantInterpretant

SignSign ObjectObject

Peirce's semiotic
triangle

ReferenceReference

SymbolSymbol ReferentReferent

Odgen & Richards'
Semiotic triangle

Figure 2.3 Semiotic triangles of Peirce1 and Ogden&Richards2

In terms of the dissertation, the process of conceptualization stands parallel with the signal

processing model of Sieber [Sieber, 2008], in which an agent is viewed as a discrete unit in

the world that can act as a recipient and/or as a sender. Accordingly, each agent owns a

decoding engine with sensors for constructing an internal model of the world based on the

signals received, which are external data instances constituting the agent’s environment.

This internal knowledge model is changing over time, and can be represented by a kind

of semantic network. At the same time, each agent has an encoding engine provided with

actuators for transforming its internal knowledge model into signals.

1[Sowa, 2000b]
2[Ogden & Richards, 1923]
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The signal processing model displayed in Figure 2.4 is taken as a basis, where the bold

arrow indicates that this study concentrates on the examination and description of how

agents build up their internal knowledge base (KB) from the signals received of the ob-

jects in their environment. The dashed lines indicate that the objects are not covered by

the investigations.

SignalSignal

KBKB SignalSignal

ObjectObject

Figure 2.4 The signal processing model of agents

Following the multi-layer semantic data model [Kovács & Sieber, 2009], the internal know-

ledge base of an agent is built up in several stages; that is the process of transforming

signals into concepts (conceptualization) occurs at several levels. The ability of agents

to distinguish the elements of their environment (object detection) corresponds to the

immediate interpretant of Peirce, which is an unanalyzed impression of input signals. The

mapping of environment objects and their relations into knowledge base concepts and their

relations can be viewed as the first dynamic interpretant. Then, the final interpretant,

that is the true interpretation of the input signals, is constructed in several interpretation

stages. As the internal knowledge model is dynamically evolving in time, in the present

work Ogden & Richard’s assumption – that the meaning of signals (their mapping to

knowledge base concepts) is determined by the previous states of the agent’s internal

knowledge model – is accepted.

2.2 Knowledge representation

The next question is how to represent ’knowledge’ in the knowledge base of the agent

investigated. According to [Davis et al., 1993] the driving preoccupation of the field of

knowledge representation (KR) should be understanding and describing the richness of

the world. In this paper, the authors argue that a knowledge representation plays five

distinct roles, each important to the nature of representation and its basic tasks. Thus, a

knowledge representation is

1. most fundamentally a surrogate that substitutes the things in the world;

2. a set of ontological commitments;

3. a fragmentary theory of intelligent reasoning;

4. a medium for pragmatically efficient computation, i.e. the computational environ-

ment in which thinking is accomplished;
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5. a medium of human expression, i.e. a language in which we say things about the

world.

Later, Sowa defines knowledge representation in [Sowa, 2000a] as a multidisciplinary sub-

ject that applies theories and techniques from three other fields: 1) logic provides the formal

structure and rules of inference; 2) ontology defines the kinds of things that exist in the

application domain; and 3) computation supports the applications that distinguish know-

ledge representation from pure philosophy. For an extensive survey and historical overview

on knowledge representation languages and applications, see [Jurafsky & Martin, 2000].

Also, [Jurafsky & Martin, 2000] lists the computational purposes a knowledge representa-

tion should serve.

2.2.1 Ontology as a knowledge representation model

Within the framework of the dissertation, ontology is the word used to describe a domain-

specific knowledge representation model. Originally, ontology as a branch of philosophy is

the science of what is, of the kinds and structures of objects, properties and relations in

every area of reality. The term ’ontology’ (or ontologia) was itself coined in 1613, inde-

pendently by two philosophers, Rudolf Göckel (Goclenius), in his Lexicon philosophicum

and Jacob Lorhard (Lorhardus), in his Theatrum philosophicum.

Formal ontology can be defined as taxonomic hierarchies of classes [Szeredi et al., 2005],

or vocabularies of terms defined by human-readable text, together with sets of formal

constraining axioms [Sántáné-Tóth, 2006]. In the philosophical sense, an ontology can be

referred to as a particular system of categories accounting for a certain vision of the world.

As such, this system does not depend on a particular language. On the other hand, in

its most prevalent use in AI, an ontology refers to an engineering artifact, constituted by

a specific vocabulary used to describe a certain reality, plus a set of explicit assumptions

regarding the intended meaning of the vocabulary words. This set of assumptions usually

has the form of a first-order logical theory, where vocabulary words appear as unary or bi-

nary predicate names, respectively, called concepts and relations. In the simplest case, an

ontology describes a hierarchy of concepts related by subsumption relationships; in more

sophisticated cases, suitable axioms are added in order to express other relationships be-

tween concepts and to constrain their intended interpretation [Guarino, 1998]. Practically

speaking, an ontology is structured knowledge, or a logical subset of general knowledge

that defines a set of domain concepts through characteristic relations.

There are several formal representations that are used for modeling ontologies, and for

expressing knowledge based on the ontology. Accordingly, ontologies can be represented

either in a textual format, or by a graphical representation format.

The proposed logic-based standards for storing ontologies in textual format are the Know-

ledge Interchange Format and the OWL web ontology language of W3C. In addition to

logic-based representations there are several other formats, which include representation

11



languages based on logic programming such as F-logic; frame-based languages such as

Ontolingua; and XML-related languages like RDF and its ontology-style specialization,

the RDF Schema (RDFS).

At present, there does not exist a general graphical format for modeling ontologies. Since

conceptual data schemes and ontologies share many similarities, there are proposals of us-

ing existing conceptual methodologies and tools for ontology modeling (mainly UML, see

[Cranefield & Purvis, 1999], [Wang & Chan, 2001], [Xueming, 2007], [Jarrar et al., 2003]).

They are examined in Section 2.2.4 on page 18 in terms of their applicability for the prob-

lem at hand.

For an extensive state-of-the-art survey on ontology representation languages, the inter-

ested reader should refer to [Bechhofer, 2002], [Caĺı et al., 2005] and [Scriptum, 2005]. For

the present research, the standard logic-based ontology languages are studied the logical

foundations of which are summarized hereinafter.

2.2.2 Logical representation models

First-order predicate logic (FOPL) is a flexible, well-understood and computationally

tractable approach to knowledge representation, which uses a wholly unambiguous formal

language interpreted by mathematical structures [Jurafsky & Martin, 2000]. It is a system

of deduction that extends propositional logic by allowing quantification over individuals

of a given domain of discourse. The syntax of FOPL is built up of a vocabulary consisting

of non-logical and logical symbols over a given alphabet. The set of non-logical symbols

includes function symbols with a fixed arity ≥ 0, and the collection of variable and constant

symbols. The set of logical symbols comprises predicate symbols with a fixed arity ≥ 0,

the Boolean connectives (∧, ∨, ¬, →), and the quantifiers (∀ and ∃). As its name implies,

FOPL is organized around the notion of predicate. Predicates are symbols that refer to

the relations that hold among some fixed number of objects in a given domain. Objects

are represented by terms, which can be defined as constants, functions or variables. FOPL

constants refer to exactly one object, and are conventionally depicted as single capitalized

letters. Functions also refer to unique objects, while variables, which are normally denoted

by single lower-case letters allow us to make statements about unnamed objects (free

variables) and also to make statements about some/all objects in some arbitrary world

being modeled (bound variables in the scope of a quantifier). Formally,

– all variable symbols are terms;

– if t1, . . . , tn are terms and f is a function symbol with arity n, then f(t1, . . . , tn) is

also a term.

A statement is expressed in the form of formulas, which are defined as follows.

– If p is a predicate symbol with arity n, and t1, . . . , tn are terms, then p(t1, . . . , tn)

is an atomic formula.

– If t1 and t2 are terms, then t1 = t2 is an atomic formula.

12



– If α and β are formulas then so are ¬α, (α ∧ β), (α ∨ β), and (α→ β).

– If α is a formula, and x is a variable, then both ∀x.α and ∃x.α are formulas.

– A sentence is a formula without free variables.

The syntax of FOPL defines the set of well-formed formulas (WFFs), while the semantics of

FOPL determines the truth value of an arbitrary formula in a given model or interpretation

(an abstract realization of a situation). Formally, an interpretation I = 〈∆, Î〉 consists of

a domain ∆ and an assignment function Î which assigns

– an f Î function with arity n to every function symbol f with arity n, where:

f Î : ∆× . . .×∆ 7→ ∆, and

– a pÎ relation with arity n to every predicate symbol p with arity n, where:

pÎ ⊆ ∆× . . .×∆.

With the aid of interpretation an element of ∆ can be assigned to every variable-free

expression. Similarly, a truth value can be assigned to every sentence. For the interpreta-

tion of expressions with variables, and formulas with free variables a variable assignment

function is required. This ν function assigns an element of ∆ to each variable symbol x,

so that ν(x) ∈ ∆. Given an interpretation I = 〈∆, Î〉 and a variable assignment ν the tν,Î

meaning of an arbitrary term t is defined as follows.

– If x is a variable, then xν,Î = ν(x).

– If t1, . . . , tn are terms and f is a function symbol with arity n, then f(t1, . . . , tn)ν,Î =

f Î(tν,Î1 , . . . , tν,În ).

Given an interpretation I = 〈∆, Î〉 and a variable assignment ν the truth value of an

arbitrary α formula is defined as I |=ν α, that is the interpretation satisfies the formula.

Regarding the different types of formulas this definition is the following.

– I |=ν p(t1, . . . , tn) iff 〈d1, . . . , dn〉 ∈ pÎ and di = tν,Îi .

– I |=ν t1 = t2 iff d1, d2 ∈ ∆ and for both di = tν,Îi where d1 = d2.

– I |=ν ¬α iff not I |=ν α.

– I |=ν α ∧ β iff I |=ν α and I |=ν β.

– I |=ν α ∨ β iff I |=ν α or I |=ν β.

– I |=ν α→ β iff not I |=ν α or I |=ν β.

– I |=ν ∀x.α iff for all d ∈ ∆ I |=ν[x 7→d] α.

– I |=ν ∃x.α iff for some d ∈ ∆ I |=ν[x 7→d] α.

Where ν[x 7→ d] is the variable assignment which assigns d ∈ ∆ to x, while assigning the

same value to every other variable as ν does [Szeredi et al., 2005].
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Description logics (DL) [Baader et al., 2003] is considered the most important know-

ledge representation formalism unifying and giving a logical basis to the well-known tra-

ditions of semantic networks, frame-based systems, semantic data models (SDMs) and

object-oriented representations [Bognár, 2000]. It is semantically based on, and hence is

a subset (a decidable fragment) of FOPL. In comparison with SDM languages, the in-

finiteness of the interpretation domain and the open-world assumption (i.e. if a statement

cannot be proved to be true using our current knowledge, we cannot draw the conclu-

sion that the statement is false) are the distinguishing features of DL. The DL syntax

[Baader et al., 2003] contains two disjoint alphabets of symbols that are used to denote

atomic concepts, designated by unary predicate symbols, and atomic roles, designated by

binary predicate symbols; where the latter are used to express relationships between con-

cepts. Terms are then built from the basic symbols using several kinds of constructors. In

the syntax of DL, concept expressions are variable-free and they are given a set-theoretic

interpretation: a concept is interpreted as a set of individuals while roles are interpreted as

sets of pairs of individuals. DL semantics is defined by interpretations: I = 〈∆, Î〉, where

∆ is the domain (a non-empty set) and Î is an interpretation function that maps

– a concept name C to C Î ⊂ ∆,

– a role name R to a binary relation RÎ ⊂ ∆×∆, and

– an individual name i to iÎ ∈ ∆.

This interpretation function extends to concept expressions in an obvious way, where C,

C1 and C2 are concept symbols, i, i1 and i2 are individual names, while nR denotes

cardinality restrictions on binary relations.

– (C1 t C2)Î = C Î
1 ∪ C Î

2.

– (C1 u C2)Î = C Î
1 ∩ C Î

2.

– (¬C)Î = ∆ \ C Î.

– {i}Î = {iÎ}.

– (∃R.C)Î = {i1 | ∃i2 〈i1, i2〉 ∈ RÎ ∧ i2 ∈ C Î}.

– (∀R.C)Î = {i1 | ∀i2 〈i1, i2〉 ∈ RÎ ⇒ i2 ∈ C Î}.

– (6 nR)Î = {i1 | | {i2 | 〈i1, i2〉 ∈ RÎ} | 6 n}.

– (> nR)Î = {i1 | | {i2 | 〈i1, i2〉 ∈ RÎ} | > n}.

Within a general knowledge base there is a clear distinction between intensional know-

ledge, or general knowledge about the problem domain, and extensional knowledge, which

is specific to a particular problem. Analogously, a DL knowledge base comprises two com-

ponents: a TBox and an ABox. The TBox contains intensional knowledge in the form of

a terminology with subsumption relationships between the concepts. The ABox contains

extensional knowledge (also called assertional knowledge) about the domain of discourse,

that is assertions about individuals.

14



2.2.3 Logic-based standard ontology languages

A proposed standard for storing ontologies in textual format is the Knowledge Interchange

Format, which is based on first-order logic. Another widely-spread ontology language is

OWL, the standard web ontology language of W3C, which is based on description logics

and is a revision of the DAML+OIL web ontology language.

Knowledge Interchange Format (KIF) [Genesereth, 1998] is a language designed for

use in the interchange of knowledge among disparate computer systems, but is not intended

as an internal representation for knowledge. Rather, it provides for the representation of

knowledge about knowledge. Its language is logically comprehensive, i.e. it provides for

the expression of arbitrary logical sentences; and has declarative semantics, so there is

no need for an interpreter to understand the meaning of expressions. Although KIF is a

highly expressive language, its main disadvantages are that 1) it complicates the job of

building fully conforming systems, and 2) the resulting systems tend to be heavyweight,

i.e. they are larger and in some cases less efficient than systems that employ more re-

stricted languages.

The grammatically legal expressions of KIF are formed from lexemes, which are built up

of characters. There are three disjoint types of expressions in the language: terms, sen-

tences, and definitions. Terms are used to denote objects in the world being described;

sentences are used to express facts about the world; and definitions are used to define

constants. Definitions and sentences are called forms, and a knowledge base is a finite set

of forms. There are all together nine types of terms, six types of sentences and three types

of definitions in KIF.

The basis for the semantics of KIF is a conceptualization of the world in terms of objects

and relations among those objects. A universe of discourse is the set of all objects presumed

or hypothesized to exist in the world. Relationships among objects take the form of

relations. Formally, a relation is defined as an arbitrary set of finite lists of objects. A

function is a special kind of relation. For every finite sequence of objects (called the

arguments), a function associates a unique object (called the value). More formally, a

function is defined as a set of finite lists of objects, one for each combination of possible

arguments. In each list, the initial elements are the arguments, and the final element is

the value.

Web Ontology Language (OWL) [Bechhofer et al., 2004] is a W3C standard family

of knowledge representation languages for authoring ontologies. It can be used to explic-

itly represent the meaning of terms in vocabularies and the relationships between those

terms. Thus, an OWL ontology consists of a set of axioms which place constraints on sets

of individuals (called classes) and the types of relationships permitted between them (see

Table 2.1 for the list of OWL class constructors and axioms). It applies an open world

assumption, but no unique name assumption.
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OWL provides three increasingly expressive sublanguages. OWL-Lite supports a classifi-

cation hierarchy and simple constraints. OWL-DL, which is based on SHIQ description

logic, supports maximum expressiveness while retaining computational completeness and

decidability. It includes all OWL language constructs, but they can be used only under

certain restrictions. OWL-Full, which is a union of OWL syntax and RDF, allows for

maximum expressiveness without computational guarantees.

Table 2.1 OWL class constructors and axioms

Class constructors Axioms

Constructor DL syntax Axiom DL syntax

intersectionOf C1 u · · · u Cn subClassOf C1 v C2

unionOf C1 t · · · t Cn equivalentClass C1 ≡ C2

complementOf ¬C disjointWith C1 v ¬C2

oneOf {i1} t · · · t {in} sameIndividualAs {i1} ≡ {i2}
allValuesFrom ∀R.C differentFrom {i1} v ¬{i2}

someValuesFrom ∃R.C subPropertyOf R1 v R2

maxCardinality > nR equivalentProperty R1 ≡ R2

minCardinality 6 nR inverseOf R1 ≡ R−2
transitiveProperty R+ v R
functionalProperty > v6 1R

inverseFunctionalProperty > v6 1R−

A first question is always to consider which sublanguage to use in ontology development.

The choice between OWL-Lite and OWL-DL depends on the extent to which users require

the more expressive constructs provided by OWL-DL; while the choice between OWL-DL

and OWL-Full depends on the extent to which users require the meta-modeling facilities

of RDF Schema. For the problem at hand maximum expressiveness is needed with com-

putational effectiveness, therefore OWL-DL is chosen, which benefits from many years of

DL research:

– it has a well-defined semantics,

– its formal properties are well understood (complexity, decidability), and

– there are known algorithms and highly optimized implemented systems for authoring

and reasoning.

OWL-DL is equivalent to SHOIN(D) description logic, where

� S ≡ ALCR+, i.e. ALC description logic extended with transitive roles;

� H: role hierarchies;

� O: instance concepts (objects);

� I: inverted roles;

� N: cardinality restrictions;

� Q: qualified cardinality restrictions;

� (D): datatypes.
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OWL supports XML Schema primitive datatypes, and there is a clear distinction between

object classes and datatypes. There is a disjoint interpretation domain ∆D for datatypes,

so that

– for a datatype dt, dtÎ ⊆ ∆D;

– and ∆D ∩∆ = ∅.

Also, there exist disjoint object and datatype properties, so that

– for a datatype property RD, RÎ
D ⊆ ∆×∆D;

– for an object property RO and datatype property RD, RÎ
O ∩RÎ

D = ∅.

An OWL ontology can be mapped to a DL knowledge base: K = 〈T,A〉, where T (Tbox)

is a set of axioms of the form:

– C1 v C2 (concept inclusion),

– C1 ≡ C2 (concept equivalence),

– R1 v R2 (role inclusion),

– R1 ≡ R2 (role equivalence),

– R+ v R (role transitivity),

and A (Abox) is a set of axioms of the form:

– i ∈ C (concept instantiation),

– 〈i1, i2〉 ∈ R (role instantiation).

An interpretation I satisfies (models) an axiom (denoted by I |=):

– I |= C1 v C2 iff C Î
1 ⊆ C Î

2.

– I |= C1 ≡ C2 iff C Î
1 = C Î

2.

– I |= R1 v R2 iff RÎ
1 ⊆ RÎ

2.

– I |= R1 ≡ R2 iff RÎ
1 = RÎ

2.

– I |= R+ v R iff (RÎ)+ ⊆ RÎ.

– I |= i ∈ C iff iÎ ∈ C Î.

– I |= 〈i1, i2〉 ∈ R iff 〈iÎ1, iÎ2〉 ∈ RÎ.

An interpretation I satisfies a Tbox T (I |= T) iff I satisfies every axiom in T. Similarly,

I satisfies an Abox A (I |= A) iff I satisfies every axiom in A. Consequently, I satisfies a

knowledge base K (I |= K) iff I satisfies both T and A [Szeredi et al., 2005].

The OWL language is defined in terms of an abstract syntax [Patel-Schneider et al., 2004];

and OWL ontologies are most commonly serialized using RDF/XML syntax (but frame-

based and functional syntax are also defined). The absence of visual syntax motivated

several proposals to use software engineering techniques (especially UML) in the ontology

development process for graphical representation.
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2.2.4 Graphical representation models

Graph-based models play an important role in modeling due to their intuitive nature.

Visual languages for knowledge representation are examined deeply in [Kremer, 1998]. To

see the differences between the underlying ideas and capabilities of some existing concep-

tual models, consider the following example. Given the investigated grammar learning

agent, in its direct environment a black circle is located in a white triangle. Let us assume

that the agent has the ability to detect the individual objects (shapes) of the environment

together with their color attributes, and is able to recognize the binary relation of inclusion

between them (immediate interpretant). This situation can be phrased as ”A black circle

is in a white triangle”.

Extended ER without attributes Extended ER with attributes
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Circle
instance
Circle

instance
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instance

Black colorBlack color White colorWhite color
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IS_AIS_A
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IS_A IS_A

1 1

Figure 2.5 SDM models for ”A black circle is in a white triangle”

Semantic data models (SDMs) provide a data-oriented description of the world ’in

by means of a simple graphical tool set which is close to the human way of thinking

(see [Kovács, 2004]). They focus on grasping the inner structure of objects. Instances

sharing commonalities are grouped under general concept types. An agent provided with

an SDM would therefore create a ’circle type’ and a ’triangle type’ with a color attribute
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in its mind. SDM models for the given example can be found in Figure 2.5. The general

drawbacks of applying an SDM for the present knowledge representation task are 1) the

sharp distinction between concept types and concept instances, 2) the lack of attribute

value representation (except for UML), and 3) the ambiguous representation of relations:

partly because they can be viewed as distinct conceptual units, and partly because the

role of the participants cannot be specified.

Semantic networks were developed after the work of Quillian [Quillian, 1968], with

the goal of characterizing knowledge by means of network-shaped cognitive structures.

Here, concepts are represented as nodes in a graph and the binary semantic relations

between the concepts are represented by named and directed edges between the nodes.

There are several different types of semantic network implementations (see [Sowa, 1991]

and [Sowa, 1992]), varying in the kind of relation they emphasize. What is common to all

semantic networks is a declarative graphical representation that can be used either to rep-

resent knowledge or to support automated systems for reasoning about knowledge. Among

the numerous variants, assertional (also called propositional) networks are of interest for

the purposes of the present research, some of which have been proposed as models of the

conceptual structures underlying natural language semantics. As their name implies, they

are designed to assert propositions. From this group of semantic networks RDF graphs

and Conceptual Graphs are selected for deeper analysis.

RDF graph [Klyne & Carroll, 2004] is a significant example of semantic networks. An

RDF graph is a set of triples, each consisting of a subject, a predicate and an object. Each

triple represents a statement of a relationship (predicate) between the concepts (subject

and object) denoted by the nodes that are connected by a directed link (pointing to the

object) (see Figure 2.6).

http://www.../inhttp://www.../in

http://.../hasSubject

http://www.../circlehttp://www.../circle

http://www.../blackhttp://www.../black

http://www.../circlehttp://www.../circle http://www.../trianglehttp://www.../triangle

http://www.../whitehttp://www.../white

http://.../hasObject

http://.../#hasColorhttp://.../#hasColor

Figure 2.6 RDF representation of ”A black circle is in a white triangle”

The disadvantages of the RDF approach from the point of view of the present research

are the following: 1) predicates are resources themselves, as a consequence of which their

distinction from concept resources is not evident; 2) all components are uniformly handled

unique resources with unique identifiers; and 3) predicates are restricted to connecting two

concept resources. In practice, the need for representing n-ary relations cannot be avoided.

RDF provides reification [Hayes, 2004] as a solution. Reification enables us to make the
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stating of an RDF triple a distinct resource, then further information can be added about

this resource. In n-ary relations, however, additional arguments in the relation do not

usually characterize the statement but rather provide additional information about the

relation instance (predicate) itself. Consider, for example that the black circle is in the

middle (not in the upper corner) of the white triangle. This fact adds further information

to the inclusion relation and not to the overall statement. This situation cannot be natu-

rally handled within the RDF framework.

Conceptual Graph (CG) is a logical formalism that includes classes, relations, indi-

viduals and quantifiers [Sowa, 1976], [Sowa, 1984]. This formalism is based on semantic

networks, and possesses both a graphical representation, called display format and a tex-

tual representation, called linear format. In its graphical notation, a conceptual graph is a

bipartite directed graph where instances of concept types are displayed as rectangles and

conceptual relations are displayed as ellipses (the set of which corresponds to thematic

roles [Fillmore, 1968] in linguistics). Directed edges then link these vertices and denote

the existence and orientation of the relation. From a linguistic point of view, ”conceptual

relations link the concept of a verb to the concepts of the participants in the occurrent

expressed by the verb” [Sowa, 2000a]. As a consequence of its strong relation to linguistics,

concept types can take part in several conceptual relations. The only restrictive factors

are human language and understanding.

From the point of view of the present research, the main drawback of CGs is their linguistic

approach. Namely, a CG model’s appearance depends on the phrasing of the statement’s

predicate. That is, if we take our example of ”A black circle is in a white triangle” and we

replace the predicate with the verb ”include” so that ”A black circle is included in a white

triangle”, the resulting CGs will be distinct because of the different conceptual relations

(see Figure 2.7). In other words, two semantically equivalent statements yield different

CG graphs due to their surface (syntactic) differences.

a) ”A black circle is in a white triangle”

b) ”A black circle is included in a white triangle”

ininCircleCircle TriangleTriangle

attrattr attrattr

BlackBlack WhiteWhite

CircleCircle

attrattr

BlackBlack

agntagnt TriangleTriangle

attrattr

WhiteWhite

Included inIncluded in thmethme

Figure 2.7 CG representations of ”A black circle is in a white triangle”
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Frame-based systems use entities like frames and their properties as a modeling primi-

tive. The notion of frame was originally introduced by Minsky. According to his definition,

a frame is a data structure for representing a concept, which can be unique or generic.

In [Minsky, 1975] Minsky proposed a knowledge representation scheme that used frames

for organizing knowledge. Frames, following the object-oriented approach, are supposed

to capture the essence of concepts or stereotypical situations by clustering all relevant

information for these situations together. Collections of such frames are to be organized

in frame systems in which the frames are interconnected by means of slots. The power

of frame theory lies in the inclusion of presumptions: its essence is that there are stored

frame structures (default and observed) which can be recalled and adopted to the actual

observations by changing the details as necessary. The disadvantage of frames is the am-

biguous representation of relations, which can be connecting slots or distinct frames (see

Figure 2.8).

a) Relation is represented by a frame slot

b) Relation is represented by a frame

CircleType Frame

Color = default

CircleInstance Frame

Color = Black
Parent = CircleType
In = TriangleInstance

TriangleType Frame

Color = default

TriangleInstance Frame

Color = White
Parent = TriangleType

CircleType Frame

Color = default

CircleInstance Frame

Color = Black
Parent = CircleType

TriangleType Frame

Color = default

TriangleInstance Frame

Color = White
Parent = TriangleType

InRelation Frame

Subject = CircleInstance
Object = TriangleInstance

Figure 2.8 Representation of ”A black circle is in a white triangle” with frames

2.2.5 Evaluation of graphical representation models

For representing the knowledge base of the investigated grammar learning agent a semantic

model is required, which supports a formal specification that enables the mapping of

semantics into a symbolic representation of the conceptualization process. The capabilities

of the agent are fixed in advance, which are

1. pattern recognition: the ability to recognize the objects of its direct environment

and their relations;

2. association: the ability of relating pieces of information based on its stored know-

ledge; and

3. generalization: the ability of creating abstract concepts by extracting the common

characteristics of existing knowledge items.
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In order to be able to achieve these tasks, the agent needs a representation model that

satisfies the following basic requirements:

– its main building blocks should be concepts and their relationships,

– it should be predicate-centered, where predicate is a type of concept,

– it should have an apriori knowledge regarding the model elements,

– it should make a clear distinction between apriori and learned elements,

– it should reflect the multi-layered nature of conceptualization, and

– it should provide high levels of flexibility and extendibility.

Accordingly, semantic data models are not adequate for the present task most importantly

because the roles the entities are playing in a relationship cannot be specified, which means

that they are not predicate-centered and they have no separate representation forms for

apriori and learned elements.A frame-based system is an appropriate representation form

for a frame-based ontology language. However, the ontology language is chosen to be

logic-based for the graphical representation of which a semantic network would be a better

choice.Even so, RDF does not fully satisfy the declared requirements because it does not

differentiate between predicates and other concepts, and it has no separate representation

forms for apriori and learned elements. The problem of representing n-ary relations also

underlies its disability.CG – with some extensions – would be a better candidate for the

actual task if it were not so strongly connected to the syntactic level of language. This

connection implies that semantic analysis must be preceded by syntactic analysis in natural

language processing (NLP) tasks.

2.3 Grammar learning

2.3.1 Formal grammars and languages

In Encyclopaedia Britannica, grammar is defined as the ”rules of a language governing its

phonology, morphology, syntax, and semantics”. A formal grammar, on the other hand,

is a set of formation rules that describe which strings formed from the alphabet of a lan-

guage are syntactically valid within the language, without describing anything else about

the language. Thus, sentences that can be derived by a formal grammar are in the language

defined by that grammar, and are called grammatical sentences. Sentences that cannot be

derived by the grammar are not in the language defined by that grammar, and are referred

to as ungrammatical. The hard line between in and out of a language characterizes all

formal languages, but is only a very simplified model of how natural languages really work.

This is because determining whether a given sentence is part of a given natural language

often depends on the context [Jurafsky & Martin, 2000].

A formal grammar G is a finite formal description that generates a language L over some

finite vocabulary V; i.e. it defines the set of valid sentences in L. In other words, grammars

are language definition meta-languages. A grammar is a 4-tuple: G = 〈NT, TS, PR,S〉,
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where NT is the finite set of nonterminals (or variables, denoted by single uppercase let-

ters); TS is the finite set of terminals (denoted by single lowercase letters); PR is the finite

set of production rules; and S ∈ NT is the start symbol. The general assumptions are

made that V = TS∪NT and TS∩NT = ∅. Greek letters denote arbitrary strings over the

vocabulary V. L(G) is the language generated by G. Thus L(G) is the set of all possible

terminal strings that can be derived by starting at S and repeatedly applying production

rules; i.e. L(G) = {w ∈ TS ∪ {ε} | S
∗⇒ w}, where

∗⇒ means to derive in zero-or-more

steps and ε is the empty string [Harrison, 1978], [Bach, 2004].

A wide range of grammar formalisms proposed for natural language processing were de-

veloped with the idea that the formalism itself should characterize the class of formal lan-

guages natural languages belong to. Many formalisms, however, are much more powerful

than necessary for modeling natural languages. In [Chomsky, 1956] Chomsky introduced

four types of formal grammars, known as the Chomsky hierarchy, in terms of their gen-

erative power. Here, the distinction between languages can be seen by examining the

structure of the production rules of their corresponding grammars.

0. Recursively enumerable or unrestricted grammars – including all formal gram-

mars – with no restrictions on the form that rules can take; i.e. the rules have the

form δ → η, where δ and η are arbitrary strings over the vocabulary V and δ 6= ε,

where ε is the empty string.

1. Context-sensitive grammars (CSG) with the restriction that the right-hand side

of the production must contain at least as many symbols as the left-hand side.

Formally, these grammars have rules of the form δNη → δξη, where N ∈ NT ,

δ, η ∈ V, δ, η 6= ε and ξ ∈ V ∪ {ε}; or of the form S → ε as long as S is not on the

right side of a production.

2. Context-free grammars (CFG) are defined by rules of the form N → δ, where

N ∈ NT is a nonterminal and δ ∈ V∪ {ε} is a string of terminals and nonterminals;

or of the form S→ ε as long as S is not on the right side of a production.

3. Regular grammars. There are two kinds of regular grammar: right-linear (right-

regular), with rules of the form N1 → wN2 or N1 → w; and left-linear (left-regular),

with rules of the form N1 → N2w or N1 → w, where N1, N2 ∈ NT and w ∈ TS.

A rule of the form S → ε is also allowed as long as S is not on the right side of a

production.

Formal grammars and languages are ordered within a subset relationship along a scale of

restrictiveness: Type 3 ⊂ Type 2 ⊂ Type 1 ⊂ Type 0. To which class a language belongs

is determined by the simplest grammar that can generate the language. Thus, for a given

language two questions must be examined: 1) it must be determined to which class the

grammar belongs that generates the language, and 2) it must be shown that there is no

other grammar generating the same language that belongs to a simpler class.
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A hotly contested issue over several decades has been the question where natural lan-

guages are located within this hierarchy. Chomsky showed in [Chomsky, 1957] that natu-

ral languages are not regular and he also presumed that natural languages are not entirely

context-free. Later, [Shieber, 1985] proved that there are context-sensitive constructions

in natural languages that cannot be adequately described with a CFG. Thus, how much

more power beyond CFG is necessary to describe these phenomena is an important ques-

tion. Linguists have found that while the context-sensitive languages seem to be a large

enough class to describe natural languages, they also seem to contain a much bigger class of

formal languages than that. Even worse, they can take up to exponential time to simulate

on ordinary computers, making them totally unworkable for practical use. All available

evidence suggests that a very cautious extension of CFG is sufficient to accommodate all

linguistic phenomena. The first approach is to extend CFG with transformations or fea-

ture structures. The second approach is to replace CFG. Joshi proposed in [Joshi, 1985]

that the class of grammars that is necessary for describing natural languages might be

characterized as mildly context-sensitive grammars. This class of grammars is located be-

tween the classes of CFG and CSG grammars. Most researchers today propose no wider

grammar class for the handling of natural languages, but there are some who are still

not satisfied with this answer and keep on searching for methods proving that natural

languages can be described by even stricter grammars.

2.3.2 Grammar induction

Grammar induction refers to the process of learning grammars from language data, and

is a particular instance of inductive learning. The general aim of statistical grammar

induction is to find a grammar that has the highest probability, given a set of training

data. Early works on grammar induction emphasized heuristic structure search, where the

primary induction is done by incrementally adding new production rules to an initially

empty grammar. In the early 1990s, attempts were made to do grammar induction by

parameter search, where the broad structure of the grammar is fixed in advance and only

parameters are induced.

CFG plays a dominating role in grammar induction as it has reasonable complexity con-

cerning the cost of generation and learning. According to [Jurafsky & Martin, 2000], CFG

is the backbone of many models of natural and computer language syntax. It is powerful

enough to express sophisticated relations among the words in a sentence, yet compu-

tationally tractable enough that efficient algorithms exist for parsing sentences with it.

Although natural languages are of higher complexity and expressive power, it is widely as-

sumed that practically CFG is an acceptable approximation of natural language. A proof

of this is that very often natural language interfaces for computer applications apply some

controlled language based on some kind of CFG. Concerning its learnability, [Gold, 1967]

publishes the disappointing result that it is impossible to identify any of the four classes

of languages in the Chomsky hierarchy in the limit if the training data consists only of

strings in the language being inferred. If only positive examples are given, then only the

finite cardinality languages are learnable. It has been proved that deterministic finite
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state languages are the largest class that can be efficiently learned by provably converg-

ing algorithms; and there is no context-free grammatical inference theory which provably

converges, if the language defined by the grammar is infinite [Jaworski & Unold, 2007].

Therefore, building algorithms that learn CFGs is one of the open and crucial problems

of grammar induction. The most evident approaches taken have been to provide learn-

ing algorithms with more helpful information, such as negative examples or structural

information (called annotation).

2.3.3 Annotation techniques

Existing grammar learning methods can be grouped as supervised or unsupervised, de-

pending on the type of training data. Supervised methods learn from labeled (annotated)

data, while unsupervised methods can learn from plain text as well. Due to the diffi-

culty of the task, the majority of statistical grammar induction methods have focused on

supervised learning [Charniak, 1996], [Manning & Schütze, 1999]. In practice, supervised

methods (see [McEnery et al., 2005] for an overview) generate better results, since they

can adapt their output to the structured examples from the initialization phase, whereas

unsupervised methods do not have any idea what the output should look like. Despite

this hurdle the natural language learning community has witnessed rapid advances in un-

supervised grammar induction, mainly because of the lack of labeled data sets in many

languages (for a review see [Clark, 2001], [Roberts & Atwell, 2002] and [1], [2]). [11] docu-

ments an attempt to induce probabilistic context-free grammar (PCFG) from an unlabeled

positive data set.

By definition, linguistic annotation covers any descriptive or analytic notations applied to

raw language data. Their role is to add information about the linguistic form. A collection

of texts with linguistic annotations is known as a corpus. In practice, syntactic and se-

mantic annotation schemes are distinguished. Syntactic annotation [Atwell et al., 2000] is

realized by either adding a part-of-speech (POS) tag to each word in a text (indicating the

grammatical role the word plays in its sentence), or determining each word’s dependency

from the head (typically the main verb) of its sentence. Semantic annotation of texts can

also be performed in two ways [Reeve & Han, 2005]. Either, the semantic role of a word

is determined in its sentence, or each word is annotated on the basis of a given (usually

domain specific) ontology.

Supervised grammar induction methods are usually based on grammatically annotated

corpora. For an overview of grammatical annotation schemes, see [Atwell et al., 2000].

The main problems with this kind of annotation are the following:

� a wide variety of annotation schemes exists,

� creation of annotated corpora is very expensive and time consuming,

� limited availability of annotated corpora,

� the language of most existing corpora is English,

� existing corpora are domain specific,
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� human-tagged corpora are subject to inconsistencies,

� machine-tagged corpora are subject to errors.

Ontology-based semantic annotation can be accomplished manually using authoring tools

which provide an integrated environment for simultaneously authoring and annotating

text; or semi-automatically. The fully automatic creation of semantic annotations is not

possible, because natural language is semantically ambiguous. For an extensive survey on

semantic annotation platforms, see [Reeve & Han, 2005]. Characteristics of this kind of

annotation are the following:

� there is no standard for ontology (annotation scheme) creation,

� annotation is expensive and time consuming,

� limited availability of ontologies,

� the language of most existing ontologies is English,

� existing ontologies are domain specific,

� manual annotation is often fraught with inconsistencies and errors,

� automated annotation has the potential benefits of consistently applying ontologies,

and using multiple ontologies to annotate a single document.

In the present research, the primary information source of the agent is the visual represen-

tation of its environment. These snapshot images are associated with symbolic language

sentences. The basic assumption is that the semantic contents of the images and the

corresponding descriptive sentences are the same, that are represented by instance-level

ontologies. The task of the agent is to learn the grammar of the given language using

the semantic information stored in the ontologies. Thus, in terms of grammar induction,

the problem can be phrased as learning grammar from symbolic language sentences aug-

mented with ontologies carrying semantic information. The distinguishing features of the

semantic annotation scheme proposed in the dissertation are the following:

� instance-level ontology-based semantic annotation is created automatically,

� assignment of annotation is sentence-based.

� the language of the ontology is indifferent.

2.3.4 Related work

In [Muresan, 2006] the author defines a new type of constraint-based grammar, which

allows deep language understanding and is learnable. The grammar models both syntax

and semantics, and has constraints at the rule level for semantic composition and semantic

interpretation, which is ontology-based. The thesis also proposes a new relational learning

model, where the learner is presented with a small set of positive representative examples

consisting of utterances paired with their semantic representations. Ontology is used as a

repository of meanings, which are connected to the grammar through a set of constraints.

The focus on ontology is motivated by the need to interpret language in terms of the

language-independent concepts of some underlying domain of discourse.
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Similarities with the approach of the present research are:

� semantic interpretation is ontology-based,

� ontology-level knowledge representation is realized by a directed acyclic graph where

nodes are concepts (or instances of concepts) and edges are semantic roles,

� the training samples are positive representative examples consisting of utterances

paired with their semantic representations,

� the basic criteria; i.e. expressive power of semantic representation, computational

tractability and learnability of the grammar.

Characteristics of Muresan’s work are:

� the grammar is constraint-based and models both syntax and semantics,

� the learner has apriori knowledge about utterance categories (syntactic and func-

tional) and agreement among categories,

� the learner is presented with a representative sublanguage for generalization,

� the use of a robust parser in the first phase of grammar induction,

� a natural language string is represented by a flat semantic molecule, which is a type

of feature structure denoted by
(
h
b

)
, where h (head) encodes the information required

for composition while b (body) is the actual semantic representation of the string;

consequently semantic representations are linked to grammatical information,

� the ontology is frame-based,

� the semantic representation can be considered as an ontology query language,

� the semantic representation is appropriate for semantic role labeling.

Distinguishing features of the present research are:

� the agent has no apriori syntactic knowledge,

� the agent is augmented with cognitive abilities, such as pattern recognition, associ-

ation and generalization,

� the use of statistical methods in grammar learning,

� sentence-level assignment of semantic and syntactic representations,

� semantic representation is ontology-based: a graphical model is also developed for

the logic-based textual format.

Figure 2.9 shows Muresan’s ontology level (OKR) and text level (TKR) representations for

our example, where each concept (denoted by #) is represented by a semantic molecule.

Thus, semantic molecules correspond to terminal symbols (words or lexical items). In or-

der to establish this correspondence, a set of elementary semantic molecule templates are

considered that correspond to lexical categories (parts-of-speech). Within Muresan’s learn-

ing framework, the lexicon and these templates are apriori given as background knowledge.
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#be#be

#circle#circle #triangle#triangle

#black#black #white#white

loc_intexp

color color

OKR

presentpresent

tense

TKR

~1.is_a = circle
~2.det = a
~2.is_a = triangle
~2.det = a
loc_int.is_a = in
~3.is_a = be
~3.tense = present
~3.exp = ~1
~3.loc_int = ~2
~4.is_a = black
~5.is_a = white
~1.color = ~4
~2.color = ~5

Figure 2.9 Muresan’s representation of ”A black circle is in a white triangle”

2.4 Conclusions

The main objective of the research is to develop a new general rule learning methodology

that alloys statistics with semantics in order to improve the performance of statistical rule

induction. In the literature, only one project has been found with the same motivation

but with a different solution. This project proves the initial assumption that the use of

semantic information in statistical rule learning is benefitial concerning the efficiency and

accuracy of the learning algorithm.

Within the framework of the present research, semantic information is represented by

instance-level ontologies. For the ontology, a logic-based representation has been chosen

because of its mathematical foundations. OWL-DL is preferred over KIF, because KIF is

not primarily designed for being an internal representation of knowledge. On the other

hand, OWL-DL is a standard highly expressive language with facilities for expressing

meaning and semantics.

As declared in Section 1.2 on page 3, the first task to be solved is to find a conceptual

ontology modeling language that can be used to describe the semantics of the investigated

grammar learning agent’s internal knowledge model the basic requirements of which are:

– its main building blocks should be concepts and their relationships,

– it should be predicate-centered, where predicate is a type of concept,

– it should have an apriori knowledge regarding the model elements,

– it should make a clear distinction between apriori and learned elements,

– it should reflect the multi-layered nature of conceptualization, and

– it should provide high levels of flexibility and extendibility.

The analysis of the existing conceptual models (see also [3], [4] and [5]) shows that they

all have some shortcomings from the aspects of the requirements. They cannot provide

a clear separation of logical and conceptual elements, and are not flexible enough to be

applied as a general model. Therefore, a novel semantic model is proposed for representing

the knowledge base in the modeled grammar induction system, which is exposed in the

next chapter.
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Chapter 3

Developing a Novel Semantic Representation Model

There are many languages in the brain, and each brain language has its own

alphabet.

J.D. Norseen: Images of Mind – The Semiotic Alphabet (1996)

Within the frames of the project an important stage is to find an appropriate formalism for

the semantic model that can represent the knowledge base of the grammar learning agent

investigated. According to the analyses in Section 2.2.4 on page 18, traditional semantic

modeling languages are not adequate for reflecting the process of conceptualization, they

cannot provide a clear separation of logical and conceptual elements, and are not flexible

enough to be applied as a general model. Therefore, the first task of the research is to

develop a semantic ontology representation language that fulfils the requirements identified

in Section 1.2 on page 3. Accordingly, in this chapter the development of a novel semantic

model is discussed, the main characteristics of which should be the following:

– its main building blocks should be concepts and their relationships,

– it should be predicate-centered, where predicate is a type of concept,

– it should have an apriori knowledge regarding the model elements,

– it should make a clear distinction between apriori and learned elements,

– it should reflect the multi-layered nature of conceptualization, and

– it should provide high levels of flexibility and extendibility.

Beyond the above characteristics, the new semantic model should possess sufficient expres-

sive power to represent symbolic language semantics, because it will be used for knowledge

representation in a grammar induction system. Since the aim is to develop a general model,

the most complex symbolic language must be taken into consideration, which is natural

language (NL). Generally, in NLP tasks the predicate calculus is used for representing

NL semantics, though the opinions in the related literature are quite diverse in terms of

the suitability of first-order versus higher-order logic because of the conflicting demands

of expressivity and computational effectiveness. This chapter starts with the analysis of

how much expressive power is needed for the problem at hand. The result is that first-

order predicate logic is too restricted, and also higher-order predicate logic needs some
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extensions. With these extensions, the new semantic model is defined in two forms: it has

a logic-based and a graphical representation, and is named Extended Conceptual Graph

(ECG). Although the name might be confusing, the model hasn’t got any connections with

the extended (refined) versions of Sowa’s CG model.

3.1 Representation of natural language

Natural languages are built up of sequences of words which are finite sequences of symbols

over a given alphabet. Syntax is the term which defines the set of rules telling us how

words may be combined to form sentences. Formally,

– the main building blocks of natural languages are characters (symbols) c̃ ∈ Σ, where

Σ denotes the finite character set (alphabet) of the language;

– words are finite sequences over Σ, that is every w ∈W ⊆ Σ∗, where W denotes the

set of words;

– sentences are finite sequences over W , that is every s ∈ S ⊆ W ∗, where S denotes

the set of sentences.

Natural languages are infinite recursive systems, hence on the basis of understanding a fi-

nite number of words we can understand and construct an infinity of sentences recursively

applying the rules of syntax [Keenan, 2005].

NL semantics is concerned with the relation between language and the ’world’. Hence, the

meaning of a sentence determines the conditions under which it is true. Since, by definition

sentences are finite sequences of words, and as a consequence of the recursive nature of

language, the meaning of a word will determine what contribution it makes to the truth

conditions of the sentences in which it occurs [Blackburn & Bos, 2003]. This is called the

principle of compositionality. For correct interpretation, however, we also need to have

world knowledge. Without context, that is without defining the domain of discourse, many

human language sentences could be assigned several meanings. This ambiguity may result

from the lexical ambiguity of words, or from the syntactic ambiguity of sentences (word

combinations). In other words, NL sentences are built up of word constituents bearing a

set of possible meanings which are made concrete by the actual context.

3.2 Semantic equivalence of NL and predicate logic

”In philosophy and linguistics the predicate calculus is used for analyzing the semantics

and logic of natural language. . . The way expressions and structures contribute to the

meaning of a natural language sentence is supposed to be determined and shown by means

of its translation into the calculus” [Ben-Yami, 2004]. The advantages of predicate logic

(PL) are the use of a simple and exact notation and interpretation system, the standard

formalism and general applicability, the ability for reasoning and rule validation, and its

convertability to other symbolisms.
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By definition, two statements in the same system are logically equivalent if, for all possible

values of the variables involved, both statements are true or both are false. If α and β are

equivalent, we write α ≡ β. Formally, given an interpretation I = 〈∆, I〉 and a variable

assignment ν, formula α and formula β are equivalent if for all I and ν

– I |=ν α and I |=ν β, or

– not I |=ν α and not I |=ν β.

If the two statements are in the same set of statements (F), then semantic equivalence is

a binary relation over the given set, denoted by Θ ⊆ F × F. If Θ is reflexive, symmetric

and transitive, then is said to be an equivalence relation.

1. Θ is reflexive if ∀ς ∈ F (ςΘς) holds.

2. Θ is symmetric if ∀ς1, ς2 ∈ F (ς1Θς2 ⇒ ς2Θς1) holds. Thus, if ς1 is the semantic

equivalent of ς2, then the opposite is also true.

3. Θ is transitive if ∀ς1, ς2, ς3 ∈ F (ς1Θς2 ∧ ς2Θς3 ⇒ ς1Θς3) holds. Thus, if ς1 is the

semantic equivalent of ς2 and ς2 is the semantic equivalent of ς3, it entails that ς1 is

the semantic equivalent of ς3.

Taking the sets of NL sentences and PL formulas all three properties evidently hold,

therefore semantic equivalence can be considered as equivalence relation over both sets.

An equivalence relation divides a set into a number of non-empty, pairwise disjoint subsets

(equivalence classes). The statement sets constructed from these semantic equivalence

classes can be denoted by NL/Θ and PL/Θ, respectively. Between the two sets, a semantic

equivalence relation n : NL/Θ → PL/Θ is defined as follows.

1. n is a mapping: if ∀s ∈ NL/Θ, ∃α ∈ PL/Θ so that (s, α) ∈ n, and ∀s ∈ NL/Θ,

∀α1, α2 ∈ PL/Θ ((s, α1), (s, α2) ∈ n ⇒ α1 = α2). Thus, every NL sentence should

have a corresponding PL formula.

2. n is injective: if ∀s1, s2 ∈ NL/Θ, ∀α ∈ PL/Θ ((s1, α), (s2, α) ∈ n ⇒ s1 = s2).

Thus, every PL formula can have only one corresponding NL sentence (but it is not

necessary to have any).

3. n is surjective: if ∀α ∈ PL/Θ, ∃s ∈ NL/Θ so that (s, α) ∈ n. Thus, every PL

formula should have one corresponding NL sentence.

4. n is bijective: if n is injective and surjective.

The attention is restricted to logical forms reflecting syntactic structure. So, the definition

of equivalence of two different notation systems is given by introducing the definition of a

composition preserving transformation.

Definition 1. Given two languages L1(F1,O1) and L2(F2,O2), where F denotes the set

of formulas and O denotes the set of operations over F, the transformation τ : L1 → L2

is said to be composition preserving if

τ(σ(ς1, ς2, ...)) ≡ τ(σ)(τ(ς1), τ(ς2), ...), (3.1)
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i.e. τ(σ(ς1, ς2, ...)) and τ(σ)(τ(ς1), τ(ς2), ...) are equivalent in all interpretations.

Without the criterion of composition preserving, an α(w1, w2, ...) general PL formula could

be assigned to any arbitrary s = w1, w2, ... NL sentence. In this case however, the semantic

interpretation of the logical formula is not easier than that of the NL sentence.

In [10] the semantic equivalence assignments between NL/Θ and PL/Θ of different order

are thoroughly examined. The conclusion is that n : NL/Θ → FOPL/Θ is not a mapping

because there are some linguistic phenomena that cannot be represented in standard FOPL

at all, or not with the precondition of composition preserving. If the set of NL sentences is

restricted though to those that can be represented in FOPL, n′ is a multivalued mapping.

On the other hand, n” : FOPL/Θ → restricted NL/Θ would be a surjective mapping

if the criterion of composition preserving is ignored. Therefore the semantic content set

FOPL/Θ is able to cover is narrower than that of NL/Θ.

We can go beyond FOPL in two directions. On the one hand, calculuses of higher order

can be introduced, in which propositions or propositional functions (and therefore sets)

can appear as arguments to other functions. On the other hand, higher (constructive

and nonconstructive) methods can be used like recursive numerical functions, symbolic

structures, and semantic methods. In some ways intermediate between these are systems

in which numbers are explicitly introduced (as primitives) into the domain of arguments

[Hinman, 2005]. The most obvious differences between HOPL and FOPL are that 1)

HOPL uses variables that range over sets instead of discrete variables; and 2) in HOPL

predicates can be arguments of predicates and values of variables (i.e. quantification over

predicates is allowed). In other words, higher-order logics allow for quantification not only

of elements of the domain of discourse, but subsets of the domain of discourse, sets of such

subsets, and other objects of higher type (such as relations between relations, functions

from relations to relations between relations, etc.). The semantics are defined so that,

rather than having a separate domain for each higher-type quantifier to range over, the

quantifiers instead range over all objects of the appropriate type [Shapiro, 2001].

The necessity of HOPL in representing NL semantics is proved in view of the arguments

against it. Firstly, reification [Jurafsky & Martin, 2000] is a technique used for represent-

ing all concepts that one wants to make statements about as objects in FOPL, instead

of using higher-order predicates. In this case, however, new relations need to be intro-

duced which in fact do not solve, but only shift the problem. Moreover, the resulting

valid FOPL formulas will not be in accordance with the precondition of composition pre-

serving. Secondly, [Peregrin, 1997] states that FOPL is sufficient, since HOPL formulas

can be converted into FOPL formulas. In the proposed formalism, an arbitrary p1(p2(x))

second-order statement can be transformed into a p1(y1)∧ p2(y2)∧ p′(y1, y2, x) FOPL for-

mula; because ∀p.p(x) is rendered into ∀y.p(y) → p′(y, x). This solution formally results

in valid FOPL formulas, but the criterion of composition preserving is violated because

the resulting formulas ignore the subordination relation between the NL constituents: all
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elements are at the same level, and the original structure is obscured. This problem can

be eliminated by the use of higher-order predicates. In general, a higher-order predic-

ate of order n takes one or more (n − 1)th-order predicates as arguments, where n > 1.

Thirdly, since FOPL restricts the use of quantifiers to ∃ and ∀ HOPL is needed to intro-

duce primitive quantifier expressions, as well as symbols for handling counting quantifiers

[Barwise & Cooper, 1981]. Although higher-order logics are more expressive, in [10] it

is shown that this formalism also needs further extensions in order to comply with the

criterion of composition preserving.

3.3 ECG: the new semantic representation model

The present project aims at studying a learning agent that is able to learn the grammar

rules of the language of the input data corresponding to the observations of the agent.

In the first stage, the expressions examined are restricted to the observations which are

related to definite, unambiguously interpretable situations. Consequently, the sentences

describing these situations are factual assertions with true logical values. Therefore the

following linguistic phenomena are beyond the scope of the investigations:

– if-then structures and conditionals,

– imperative, optative, exclamatory and interrogative sentences,

– probability and other certainty/uncertainty factors,

– intentional secondary meaning (pragmatics).

On the other hand, linguistic phenomena that need to be studied are as follows:

– domain types,

– referring expressions,

– adverbs,

– adjectives,

– numerical expressions and cardinality,

– quantification,

– logical connectives,

– historical (temporal) sequences, and

– causality.

For the composition preserving logical representation of the linguistic phenomena exam-

ined, the following HOPL extensions are proposed.

1) Arbitrary predicates (relations) are allowed, denoted by capitalized words. Domain

types are assigned to the arguments of predicates, which specify the semantic roles these

arguments play. The fixed set of roles (analogously to thematic roles [Fillmore, 1968] in

linguistics) are associated with and determined by the predicate.
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1.1/a Peter loves Mary.

1.1/b Love(Subject: Peter, Object: Mary).

2) Concepts are regarded as sets. Constants referring to specific objects (concepts) are

single-element sets denoted by capitalized words, while constants referring to general con-

cepts are multiple-element sets denoted by lower-case words. An element of a set c is

denoted by the isa(c) function (functions are denoted by lower-case words). An object

can be referred by the : operator.

2.1/a Peter reads a book.

2.1/b Read(Subject: Peter, Object: isa(book)).

2.2/a Peter reads a/the book Tom likes.

2.2/b Read(Subject: Peter, Object: isa(book):x |
Like(Subject: Tom, Object: x)).

From the set-based treatment of concepts follows that plural forms, when used for ref-

erencing objects in general, are represented as abstract concepts, i.e. multiple-element

sets.

2.3/a Peter likes books.

2.3/b Like(Subject: Peter, Object: book).

3) By the representation of adverbs a distinction should be made between those that

describe the circumstances of the action or state expressed by the predicate, and those

that add extra conditions connected with the basic assertion. The latter is represented by

the use of the Happens relation. The difference is clearly seen in the second example.

3.1/a Peter travels by train.

3.1/b Travel(Subject: Peter, Instrument: isa(train)).

3.2/a Peter often travels by train.

3.2/b Happens(Subject: Travel(Subject: Peter, Instrument: isa(train)),

Time: Often).

3.2/c Travel(Subject: Peter, Instrument: isa(train), Time: Often).

The logical form in 3.2/c is incorrect, because from its truth it does not follow that

Travel(Subject: Peter, Time: Often) is true.

The next example is an illustration for the ambivalent nature of NL, where it cannot be

decided which predicate the adverb is linked to.

3.3/a I see you running today.

3.3/b See(Subject: I, Object: Run(Subject: You, Time: Today)).

3.3/c See(Subject: I, Object: Run(Subject: You), Time: Today).
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4) Adjectives can be added to the assertion by the use of the Property relation.

4.1/a Peter reads a scientific book.

4.1/b Read(Subject: Peter, Object: isa(book):x |
Property(Subject: x, Object: Scientific)).

5) For the treatment of numerical expressions, numerical relations and numerical primitives

are needed to be introduced, as well as the some(c) function for creating a group of objects.

5.1/a Peter reads two books.

5.1/b Read(Subject: Peter, Object: some(isa(book)):x |
Property(Subject: x, Object: Two)).

5.2/a Peter reads more books than magazines.

5.2/b Read(Subject: Peter, Object: (some(isa(book)):x,

some(isa(magazine)):y) | More(Subject: x, Object: y)).

5.3/a Peter reads more books than Tom.

5.3/b (Read(Subject: Peter, Object: some(isa(book)):x),

Read(Subject: Tom, Object: some(isa(book)):y) |
More(Subject: x, Object: y)).

6) Existential and universal quantifiers are defined similarly by means of the some(c) and

all(c) functions, respectively.

6.1/a There is a book on a/the table.

6.1/b Is(Subject: isa(book), Location: isa(table)).

6.2/a There are some books on a/the table.

6.2/b Is(Subject: some(isa(book)), Location: isa(table)).

6.3/a All books are on a/the table.

6.3/b Is(Subject: all(isa(book)), Location: isa(table)).

7) Logical operators can be applied to predicates or to arguments of predicates. When

they refer to predicates it should be noted that and means the presence of multiple pred-

icates (they can be connected with the , operator), while or means the uncertainty of the

observation (which is beyond the scope of the investigations).

7.1/a Peter reads and laughs.

7.1/b (Read(Subject: Peter), Laugh(Subject: Peter)).

7.2/a Peter reads not laughs. ≡ Peter reads.

7.2/b Peter does not read.

7.2/c NotRead(Subject: Peter).
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In the latter example, case (a) demonstrates that the examinations are restricted to obser-

vations and the addition of extra information is not allowed. Case (b) states that Peter is

not doing something without stating what he is doing. As a result, case (c) shows that an

observation is uninterpretable without a specific predicate, thus not can only be allowed

if included in the predicate.

The same applies when logical operators are related to arguments of predicates. Here

and is represented by the grouping of the corresponding arguments, and or means un-

certainty which is not covered by the investigations. Also, negation either expresses that

an argument is not something without saying what it is, which is uninterpretable in the

present framework; or it states what the argument is, in which case the negation is extra

information (e.g.: Peter reads not a book but a magazine. = Peter reads a magazine.).

8) Temporal aspects can only be studied when more observations are compared on a

historical basis. In this case the former observation(s) must have a tense preceding the

latter observation(s). The observation at the end of the history demonstrates the actual

(present) state of the system.

8.1/a Peter gives Tom a book. Tom reads the book.

8.1/b Give(Subject: Peter, Object: isa(book):x, Recipient: Tom) →
Read(Subject: Tom, Object: x).

8.1/c Tom reads the book that Peter gave him.

9) The examination of causes and results leads us back again to the Happens relation.

9.1/a Peter cannot sleep because Tom is dancing.

9.1/b Happens(Cause: Dance(Subject: Tom),

Result: NotSleep(Subject: Peter)).

The new formalism that has been developed by applying the above extensions to HOPL

(called EHOPL) is the logic-based representation of the ECG semantic model (called ECG-

HOPL). From the above analysis it can be seen that in view of the criterion of composition

preserving, ECG-HOPL approximates NL better than HOPL without these extensions.

Therefore, considering the assignment m′ : ECG-HOPL/Θ → NL/Θ (where ECG-

HOPL/Θ denotes the set of EHOPL statements constructed from semantic equivalence

classes) it can be stated that m′ is a surjective mapping. This result is summarized in the

next statement.

Statement 1. Every ECG-HOPL statement can be semantically unambiguously rendered

into an NL sentence examined, that is every ECG-HOPL statement can have only one cor-

responding NL formulation (with the assumption that semantically identical NL sentences

examined are considered as one). On the other hand, every NL sentence examined can be

approximated by an ECG-HOPL statement if the pragmatic level of language is not taken

into account.

Consequence. ECG can be used as a sentence-level semantic annotation language.
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3.3.1 Formal definition of model elements

The main components of the problem area are learning agents and the observed environ-

ment. It is assumed that the agents are able to detect objects, their attributes and some

given kinds of relationships between them within the environment. This set of relation-

ships depends on the agent’s type; that is different agent classes may have different sets of

recognizable relations. Based on the observations, each agent develops a knowledge model

that describes the semantics of its observations and consequently that of the environment.

Therefore, the model language proposed defines a high-level, graph-based semantic model

that can be used to describe the different phases of conceptualization within the agents

examined. The ECG model is based on the following base sets:

– the set of all (static and dynamic) object instances, denoted by UI ,

– the set of concepts, denoted by UC , and

– the set of agents, denoted by UA.

It is assumed that these base sets are non-empty sets. In the detailed description of the

model language, the following terms and formal definitions are used.

1) The term environment denotes the context in which the agents exist. The environment,

denoted by Γ, is represented in a graph formalism as the key elements of the model are

objects and their relationships. The environment is shared by different agents. Formally,

Γ = Γ(I,→I),

I ⊆ UI ,

→I ⊆ I × I2. (3.2)

The node component of the Γ environment is denoted by IΓ and the edge component has

a notation of →IΓ .

2) The Γ′ sub-environment is a subset of the Γ environment, Γ′ ⊆ Γ, so that the following

properties are met:

IΓ′ ⊆ IΓ,

→IΓ′ ⊆ →IΓ ,

→IΓ′ ⊆ IΓ′ × I2
Γ′ . (3.3)

3) The characteristic environment of an agent ι, denoted by Γι, is a sub-environment that

is assigned to the agent. This sub-environment is used to describe the direct environment

of the agent, as different agents may have access to different subparts of the universal

environment. The role of the characteristic environment is to capture all elements that an

agent has access to.

4) The environment snapshot for an agent ι is a sub-environment of its Γι characteristic

environment, denoted by SΓι . The snapshot refers to the environment accessed at a
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given point of time. The snapshot is a static mapping of the environment. The list of

environment snapshots is defined as the environment history and is denoted by HΓι , where⋃
S∈HΓι

S = Γι. (3.4)

5) A primary knowledge model describes a concept-architecture. This level corresponds to

the lowest level of concepts, i.e. instance concepts. A knowledge model always belongs to

a single agent. The elements of the primary knowledge model are symbolic representations

of the characteristic environment of the agent. The primary knowledge model is given by

a graph where the nodes are called concepts and the edges are the relationships between

them. The primary knowledge model of an agent α is denoted by Λp,α, where

Λπ,ι = {C̃,→C̃},

C̃ ⊆ UC ,

→C̃ ⊆ C̃× C̃
2
. (3.5)

The C̃ concept part of the Λπ,ι knowledge model is denoted by C̃ Λπ,ι .

6) Since the primary knowledge model corresponds to the actual characteristic environ-

ment, a mapping function is defined from the environment to the concepts. This lowest

level of conceptualization is called signal level layer in [Sieber, 2008]. In the present model,

the signal level layer corresponds to the primary knowledge model. The mapping from the

environment to the primary knowledge model has an important role, and is defined as pri-

mary conceptualization mapping. This is a surjective, but usually non-injective function

from the agent’s characteristic environment onto the primary knowledge model – that is

different objects may be mapped to the same concept – denoted by

χπ,ι : Γι → Λπ,ι, (3.6)

where instances are mapped to concepts and environment relationships correspond to

concept relationships:

χπ,ι(IΓι) = C̃Λπ,ι ,

χπ,ι(→IΓι
) = →C̃Λπ,ι

. (3.7)

7) A primary knowledge model snapshot for an agent is a primary conceptualization map-

ping of its characteristic environment snapshot, denoted by SΛπ,ι . The snapshot belongs

to a given point of time. During the lifetime of an agent, the agent processes a sequence

of snapshots. This sequence is called the history of the agent, denoted by HΛπ,ι , where⋃
S∈HΛπ,ι

S = Λπ,ι. (3.8)

The history of the primary knowledge model snapshots is the prime source of the agent’s

conceptualization process. Agents can store not only the primary knowledge models but
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the corresponding history, too. In addition to the primary knowledge model, agents can

also manage higher-level concepts. These concepts are defined as the extension of the

primary knowledge model. The knowledge model snapshots describe simple static infor-

mation modules where temporal aspects of the events are ignored.

8) Temporal and other complex relationships are managed at a higher level of conceptual-

ization. The Λι extended knowledge model of agent ι is defined to describe compound,

abstract concepts, so that

Λι = {C̃,→C̃},

C̃ ⊆ UC ,

→C̃ ⊆ C̃× C̃
2
. (3.9)

The Λι model is an extension of the primary knowledge model, thus

C̃Λπ,ι ⊆ C̃Λι ,

→C̃Λπ,ι
⊆ →C̃Λι

. (3.10)

9) In order to keep predicates in the center of modeling, a special type of concepts is intro-

duced, the so-called predicate concepts which are the kernels of atomic propositions. The

set of predicate concepts is open. Predicate concepts with the corresponding relationships

are based on the primary knowledge model and are defined with patterns. Non-predicate

concepts are called category concepts. Derivation rules are used to define category con-

cepts from primary knowledge concepts. The set of derivation rules is agent dependent.

This rule set is denoted by

R̃ι : Λπ,ι → Λι. (3.11)

10) An extended knowledge model fragment is a sub-model that contains exactly one pre-

dicate concept as its dedicated core (or kernel) predicate concept and some other concepts,

linked to this predicate concept, which may be predicate concepts as well as category

concepts. The graph of the fragment is a connected graph. The fragment is used to

describe a statement or proposition.

3.3.2 Basic building blocks of the model

The model should be able to support model validation and reasoning processes as well.

Thus, a key feature of the model is its strong relationship to the logic-based predicate

formalism; that is the model can be constructed from atomic predicates and it can be

transformed into logical formulas. The logic-based formalism provides a more powerful

mechanism for model evaluation and model processing.

Beside the usual modeling elements, additional elements are introduced that enable a

more efficient and powerful description of the conceptualization process. The proposed

ECG model contains three primitive types: concepts, relationships and containers. Based

on their behavior, the following concept sub-types are defined.
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1. According to the grade of identification:

� (N) Noname concept: is a primary concept that has no context-unique identi-

fication name.

� (R) Permanent-named concept: is a concept having a context-unique name. A

permanent concept is associated with an implicit definition that enables the

identification of its instances in the environment.

� (T) Temporary-named concept: is a concept occurring in some previous snap-

shot(s) of the history as a noname concept.

2. Categories on a logical basis:

� (P) Predicate concept: is a concept that is used to denote predicates that are

usually given by verbs in sentences. Predicate concepts can be the kernels of

model fragments.

� (C) Category concept: is the term covering all non-predicate concepts. Cat-

egory concepts can denote various attributes for example. Each category con-

cept defines a subset of instances that match this category concept.

3. According to the model level:

� (F) Primary concept: is a concept at the instance level. Primary concepts

correspond to instances of the agent’s environment.

� (A) Abstract (derived) concept: a higher-level concept in the agent’s extended

knowledge model. The derivation rule is defined with a sequence of snapshots.

4. Categories on the basis of cardinality:

� (I) Single instance concept: is a concept that identifies only one object.

� (M) Class concept: is a concept that covers several instances.

Due to the semantic integrity constraints, only the following concept types are allowed:

FICN, FICT, FICR, FMCR, FMPR, AMCR and AMPR.

Relationship types are categorized as follows.

1. According to the model level:

� (F) Primary relationship: is a relationship that can be recognized by the agent.

It is detected usually in the environment.

� (A) Abstract (derived) relationship: is a relationship that is based on primary

relationships. The derivation rule is defined with a sequence of snapshots.

2. According to the logical level:

� (I) Specialization relationship: is equivalent to the usual ISA relationship. It

provides inheritance. A concept may have multiple parents.

� (R) Role relationship: is a relation representing an arbitrary attribute of a

predicate concept.
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3. Categories on the basis of cardinality:

� (S) Single instance relationship: only one object cluster is identified by this

relation.

� (M) Class relationship: several instances can belong to the relationship.

The relationship types allowed are FMI, FSR, FMR and AMR.

The group of container elements includes structure modules.

� Model snapshot: is a model segment that corresponds to a given point of time. It

contains only static elements.

� Model fragment: is a special part of the entire model. A fragment should contain

exactly one predicate concept as its dedicated kernel concept. A knowledge model

is usually transported to other agents in fragment units.

� Model history: is a sequence of successive snapshots in time. It can describe events

and other time-dependent phenomena.

Between the container elements a special relationship is defined, called derivation rela-

tionship. It is a relationship that can be used to describe derivation rules. It chains the

derived element with a sequence of corresponding snapshots.

3.3.3 Graphical representation of ECG

In order to present the elements of the model in an easy to understand formalism, a graph-

ical language is defined (called ECG diagram). The graphical elements of the model are

listed in Figure 3.1.

FMCR

FMR

FMPR

FSR

FICN
FMI

PredicatePredicate

Predicate AMPR

primary predicate
class concept

primary predicate
class concept

_1_1
primary noname category 
instance concept

FICT
#1#1

primary  temporary-named 
category instance concept

Concepts:

conceptconcept

ConceptConcept

concept

primary  permanent-named 
category instance concept

FICR
primary  permanent-named 
category class concept

AMCR

abstract  permanent-named 
category class concept

Relations:

a.) between concepts:

b.) between containers:

primary role relationship
instance: Predicate(_n())
class:        Predicate(Role())

primary IsA class relationship
isa(t1, t2): args. are terms

abstract role class relationship
AMR

derivation relationship

Containers:

model snapshot

model fragment

Figure 3.1 Graphical components of ECG diagram

� FICN is an instance constant with a name of the form n, where n is a number.

� FICT is an instance constant with a name of the form #n, where n is a number.
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� FICR is an instance constant with a name of capital letters.

� FMCR is a class constant with a name of lower-case letters.

� FMPR is a predicate with a name of capital letters.

� AMCR is a class constant with a name of lower-case letters and with an implication

rule.

� AMPR is a predicate with a name of capital letters and with an implication rule.

� FMI is a predicate of the form isa(t1, t2), where arguments t1 and t2 are terms.

� FSR is a function used as predicate argument, where the name is given in the form

n, where n is a number.

� FMR is a function used as predicate argument, where the name is given in capital

letters.

� AMR is a function used as predicate argument, where the name is given in capital

letters and with an implication rule.

The use of the graphical elements is demonstrated by the example described in Section

2.2 on page 10. The agent’s characteristic environment contains an environment snapshot

with a black circle located in the middle of a white triangle. The agent is defined so that it

can detect the individual objects of the environment, together with their color attributes,

and is able to recognize the binary relation of inclusion between them. Let us assume

that agents can observe the signals coming from their characteristic environment through

different sensors each dedicated to a particular sense. That is, for example agents have a

separate sensor for detecting the color attribute of objects. Thus, observing the color of

an object is a built-in ability of agents together with the knowledge that signals coming

from this sensor are colors (i.e. colors are permanent-named concepts). Based on its ob-

servations, the agent constructs the primary knowledge model with primary concepts and

relationships, which is displayed in Figure 3.2. The present model is built up of a model

snapshot with one fragment, where the dedicated predicate concept is marked by *.

blackblack

circlecircle

_1_1

PropertyProperty

In*In*
Subject

whitewhite

triangletriangle

_2_2

PropertyProperty

Subject

Object

ObjectObject

Subject

FSR FMPR FSR

FMCR

FMR

FMPR

FSR

FICN

FMI

FMCR

FMCR

FMR

FMPR

FSR

FICN

FMI

FMCR

Figure 3.2 ECG diagram representation of ”A black circle is in a white triangle”
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3.3.4 Equivalence of ECG-HOPL and ECG diagram

In Definition 1 a composition preserving transformation is defined, and it is stated that

two statements from different notation systems are said to be equivalent if there exists a

composition preserving transformation between them by means of which the two formulas

are equivalent in all interpretations. The following analysis goes through the linguistic

phenomena identified in Section 3.3 on page 33, and specifies the composition preserving

transformation of ECG-HOPL statements into ECG diagram graphical structures. Figure

3.3 shows the basic ECG diagram structures identified.

PredicatePredicate

argumentargument

1)

Arg. type

FMCR
concept
FMCR

concept

2)
unnamed
argument
unnamed
argument

isa()

3)
HappensHappens

PredicatePredicate argumentargument

Arg. typeSubject

4)

PropertyProperty

argumentargument

ObjectSubj.

PredicatePredicate

argumentargument

Arg. type

5)

argumentargument

PredicatePredicate

Arg. type

FMCR
concept
FMCR

concept

isa() argumentargument

Figure 3.3 Basic ECG diagram graphical structures

Domain types: 1) shows a predicate with a typed argument, where types correspond

to semantic roles. The fixed set of roles are associated with and determined by the

predicate. Arguments can be arbitrary ECG concepts, including predicate concepts

as well.

Referring expressions: Objects are represented by different types of category concepts

(see Figure 3.1). Accordingly, there is a distinction between concepts referring to

concrete objects (FICR), concepts referring to a collection of objects (FMCR), con-

cepts referring to unreferenced unnamed objects (FICN), and concepts referring to

referenced unnamed objects (FICT). The two latter serve for making a distinction

between the use of indefinite and definite articles, respectively (see Figure 3.2). 2)

illustrates how an unnamed object is associated with a collection of named objects

through the isa() relationship.

Adverbs: Adverbs connected to the predicate are considered to be extra arguments of

the predicate as in 1). On the other hand, 3) demonstrates how adverbs associated

not only with the predicate itself but with the whole assertion are handled.

Adjectives: 4) shows the treatment of adjectives as arguments of the Property predicate.
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Numerical expressions: 5) displays how groups of objects can be composed. If an

adjective indicating the cardinality of the group is also present, then a Property

predicate with an argument needs to be added to the construction.

Causality: Causality can be traced back to 3) where the Happens predicate has a Cause-

type and a Result-type predicate argument.

Quantifiers, logical connectives, temporal sequences: The handling of quantifiers,

logical connectives and temporal sequences originates in the previously discussed

basic structures with the extension that also predicates can comprise a group.

From these basic structures an ECG diagram, which is actually a semantic network, with

arbitrary complexity can be built. For illustration, see Figure 3.2.

This analysis proves that the assignment e : ECG-HOPL/Θ → ECG diagram is a

bijective function, therefore e−1 : ECG diagram→ ECG-HOPL/Θ also exists.

Statement 2. The ECG-HOPL and the ECG diagram formalisms are semantically equi-

valent, that is the same semantic content can be represented by both symbolisms. Therefore

the ECG diagram can be viewed as the graphical counterpart of the ECG-HOPL language.

As a consequence, the assignment f ′ : ECG diagram → NL/Θ is a surjective mapping,

just like m′ : ECG-HOPL/Θ → NL/Θ.

3.3.5 Visualization of ECG ontologies

Generally speaking, ontology is structured knowledge that defines a set of domain concepts

through characteristic relations. Within the frames of the dissertation, semantic informa-

tion is represented by the ECG model which bears the features of ontologies, therefore it

can be considered as an ontology modeling language. In this project ECG ontologies are

stored in standard OWL DL textual format. The steps of their construction can be found

in Appendix B. They are visualized by ECG diagram graphs, the creation of which is

performed by Algorithm 3.1.

The cost of the algorithm is determined in function of the size of the input (denoted by

n), which is the total number of concepts and relations in the ontology to be displayed.

This equals the number of OWL elements in the input file. Summing up the costs of the

instructions, the cost of the algorithm is 2n + (n/2)2, where the number of relations is

n/2; which can be approximated by O(n2).
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Input: ECG-HOPL ontology in textual OWL DL format

Output: ECG diagram graph

kp = Find(hasKernelPredicate)

Level = 0

Draw(kp)

Nodes = kp

Relations = Find all relations where hasDomain=kp

while Relations is not empty do

Level = Level + 1

LevelRelations = { }
foreach r ∈ Relations do

domain = Find(hasDomain)

range = Find(hasRange)

if range is not in Nodes then

Draw(range)

Draw(r) starting from domain

Nodes = Nodes + range

LevelRelations = LevelRelations + range

if domain is not in Nodes then

Draw(domain)

Draw(r) pointing to range

Nodes = Nodes + domain

LevelRelations = LevelRelations + domain

Relations = Find all relations where hasDomain or hasRange is in LevelRelations

Algorithm 3.1 Generation of ECG diagram graphs from OWL ontologies

3.3.6 Model evaluation

ECG is a conceptual modeling language designed in view of the requirements defined in

Section 1.2 on page 3. The main characteristics of the model can be summarized as follows.

Main building blocks of the model The main building blocks of the ECG model

are concepts, relationships, and containers which serve for structuring the model. ECG

differentiates between several categories of concept and relationship types which constitute

the container types. The ’world’ is built up of interconnected ECG model fragments

representing separate observations, containing exactly one kernel predicate (denoted by *)

and having ’true’ truth value.

Predicate-centeredness Predicate concepts, which are distinguished from non-predic-

ate concepts, are the kernels of atomic propositions. In the center of an ECG model

fragment stays the kernel predicate, and each basic ECG graphical structure is organized

around a predicate.

Multiple conceptualization levels In the ECG model, the process of conceptualiza-

tion occurs at two levels. At the primary level the direct and static mapping of the objects

and relations within an observation takes place. At the extended or abstract level temporal

and other complex relationship types are also managed.
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Apriori knowledge regarding model elements The ECG model is designed for

knowledge representation in learning agents. The capabilities of the agents are fixed in

advance, which are pattern recognition, association and generalization. Agents are defined

so that they are able to detect objects in the environment, their attributes, and the

relationships between them; where the set of recognizable attributes and relationships

are pre-defined.

Distinction between apriori and learned elements The primary level of the ECG

model serves for the direct mapping of environment objects and relationships into primary-

level knowledge items. The abstract level of the ECG model provides abstract elements

for representing the phases of conceptualization.

Flexibility The ECG model is able to grasp the semantic content of situations. The

elements of the environment can be represented by the relatively small, fixed set of ECG

model elements. This means that several environment elements are mapped to the same

ECG model element, which has therefore flexible semantic assignment.

Extendibility The ECG model is a recursive, compositional system: that is infinitely

many statements can be constructed from the small finite set of model elements. Conse-

quently, the more extended an ECG model is, the better it is able to approximate NL.

According to the evaluation of the model, it can be stated that ECG satisfies the declared

requirements of the knowledge representation form in the grammar induction system inves-

tigated, and therefore it can be used to describe the semantics of the examined grammar

learning agent’s internal knowledge model.

3.4 Formalizing ECG-HOPL with CFG

From a practical point of view, it is important to see that the syntax of the proposed se-

mantic representation language is simple enough so that it can be generated by a powerful,

but computationally tractable grammar. Since CFG is the most commonly used mathe-

matical system, or meta-language for modeling constituent structure in NLs, the goal of

this section is to show that the syntax of ECG-HOPL can be given by context-free rules

(see also [9]).

The syntax of FOPL formulas is given by the G′ = (∆,NT, TS, PR,S) grammar. The

well-formed formulas can be generated by starting from S ∈ NT and applying the PR

production rules. NT is the set of nonterminals, TS is the set of terminals; and TS∩NT =

∅ holds. FOPL statements are interpreted over the DO ∈ ∆ domains comprising atomic

objects. Production rules of context-free grammars are of the form N → δ, where N stands

for an arbitrary nonterminal, while δ is an arbitrary sequence of terminals and nonterminals

which can even be empty. Accordingly, the formal definition of FOPL with CFG is as
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follows (where f : DO1 ×DO2 · · · → ∆ is the function symbol and p ⊆ DO1 ×DO2 . . . is

the predicate symbol).

S =
{

Formula
}

NT =
{

Formula, Atom, Term
}

TS =
{

connective, quantifier, constant, variable, predicate, function
}

PR =
{

Formula→ Atom
∣∣¬Formula

∣∣Formula connective Formula
∣∣quantifier variable Formula

Atom→ predicate(Term, . . . )

Term→ function(Term, . . . )
∣∣constant

∣∣ variable}
∆ =

⋃
DO∈∆

DO

Dconnective =
{
∧, ∨, ⇒

}
Dquantifier =

{
∃, ∀,

}
Dconstant =

{
A, B, . . .

}
∈DOi

Dvariable =
{
x, y, . . .

}
∈DOj

Dpredicate =
{

Read, Give, . . .
}

∈DOk

Dfunction =
{

fatherOf, friendOf, . . .
}

∈DOl

The most significant differences between HOPL and FOPL are that

1. HOPL uses variables that range over sets instead of discrete variables, and

2. in HOPL predicates can be arguments of predicates and values of variables (that is

quantification over predicates is allowed).

Accordingly, the formal definition of HOPL with CFG is as follows (where f : DO1 ×
DO2 · · · → ∆ is the function symbol and p ⊆ DO1 ×DO2 . . . is the predicate symbol).

S =
{

Formula
}

NT =
{

Formula, Atom, Term
}

TS =
{

connective, quantifier, constant,variable, predicate, function
}

PR =
{

Formula→ Atom
∣∣¬Formula

∣∣Formula connective Formula
∣∣quantifier variable Formula

Atom→ predicate(Term, . . . )
∣∣predicate(Atom, . . . )

Term→ function(Term, . . . )
∣∣function(Atom, . . . )

∣∣constant
∣∣ variable}

∆ =
⋃

DO∈∆
DO

Dconnective =
{
∧, ∨, ⇒

}
Dquantifier =

{
∃, ∀,

}
Dconstant =

{
A, B, . . .

}
∈DOi

Dvariable =
{
x, y, . . .

}
∈DOj ∪Dpredicate

Dpredicate =
{

Read, Give, . . .
}

∈DOk

Dfunction =
{

fatherOf, friendOf, . . .
}

∈DOl
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The most important extensions of HOPL introduced are that

1. the arguments of predicates are typed,

2. constants are differentiated as single-element and multiple-element sets,

3. formulas can also be arguments of predicates, and

4. quantifiers are eliminated.

Among these, the first three are real extensions of FOPL, thus FOPL formulas can be

converted to a form complying to them. For the elimination of quantifiers the lemma is

used that to every FOPL formula a logically equivalent prenex formula can be constructed

[Varga & Várterész, 2003], which has the form

Q1x1Q2x2 . . . Qnxnα, (3.12)

where (n ≥ 0) and Q denotes the quantifiers and α is quantifier-free. Then the some()

and all() functions can be applied to this formula. Accordingly, the formal definition of

ECG-HOPL with CFG is the following (where f : DO1 × DO2 · · · → ∆ is the function

symbol and p ⊆ DO1 ×DO2 . . . is the predicate symbol).

S =
{

Formula
}

NT =
{

Formula, Atom, Term, Compoundformula
}

TS =
{

connective, object constant, abstract constant,

variable, predicate, function, type
}

PR =
{

Formula→ Atom
∣∣Compoundformula

∣∣Formula connective Formula

Atom→ predicate(type: Term, . . . )
∣∣predicate(type: Formula, . . . )

Term→ function(Term, . . . )
∣∣function(Atom, . . . )

∣∣object constant
∣∣ abstract constant

Compoundformula→ predicate(type: Term, . . . ,

type: function(abstract constant):variable, . . . |
predicate(type: Term, . . . ,type: variable, . . . ))}

∆ =
⋃

DO∈∆
DO

Dconnective =
{

, →
}

Dtype =
{

Subject, Object, . . .
}

Dobject constant =
{

Peter, Often, . . .
}

∈DOi

Dabstract constant =
{

book, train, . . .
}

∈DOj

Dvariable =
{
x, y, . . .

}
∈DOk

Dpredicate =
{

Read, More, . . .
}

∈DOl

Dfunction =
{

isa, some, all, . . .
}

∈DOm

Statement 3. ECG-HOPL can be converted to CFG, which proves that the syntax of

the semantic representation language proposed is simple enough so that a computationally

effective learning algorithm can be constructed for inducing a set of rules from ECG.
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3.5 Related work

In [Ilieva, 2007] a universal graphical notation is defined, which is equally valid for the

presentation of linguistic knowledge and a problem domain knowledge. Using a unified

graphical representation for natural language and the knowledge it carries, the authors

are literally able to draw text as a picture. The process is based on a deep syntactic

analysis (including part-of-speech tagging, morphological analysis, memory-based parsing

and chunking) and a clear representation of the text, using a limited set of meaningful

graphical symbols.
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Figure 3.4 Ilieva’s basic graphical notations [Ilieva, 2007]

As a result of the syntactic analysis, a natural language sentence is divided into three basic

groups according to the function each one performs: Su(bject), Pr(edicate) and Ob(ject).

The subject and the object are noun groups; while the predicate is a verb group consisting

of a main verb, and its corresponding adverb, modality, infinitive, and auxiliary verbs.
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Several sentences can be connected with conjunctions or relative pronouns in order to

produce a compound sentence.

The basic building blocks of the graphical language are concepts (entities) and the re-

lations between them (see Figure 3.4). The concepts are nouns in the natural language

sentence taking on the role of subject or object. In the graph only the name of the concept

is displayed in an oval form, while all other information is kept in the tabular presentation

of the text, which serves as a knowledge base for all kinds of syntactic and semantic know-

ledge extracted during the analysis. The relations between the concepts are presented as

a pointed and labeled arc. For the demonstration of the model’s graphical elements, see

Figure 3.5.

blackblack

circlecircle

whitewhite

triangletriangle
is in

Figure 3.5 Ilieva’s representation of ”A black circle is in a white triangle”

Similarities with the approach of the present research are:

� the purpose of representing knowledge in a graphical form,

� the philosophy behind the model is that there is a relation between the basic building

blocks of language and knowledge,

� the triple division of ”knowledge” into subject, predicate and object,

� the basic building blocks of the graphical language are concepts and relations,

� the graphical language is a kind of semantic network (an assertional network),

� the model attaches to each entity all the relations it is involved in,

� entities can play different roles in different relations.

Characteristics of Ilieva’s work are:

� the graphical language is used as an intermediate language between a natural lan-

guage and UML (its main purpose is to automatically translate textual user require-

ments written in uncontrolled natural language into UML, or other types of software

engineering diagrams),

� a graph is built after a syntactic analysis,

� semantic knowledge is stored in a structured tabular presentation,

� the model can also be considered as an executable or hybrid semantic network.

Distinguishing features of the present research are:

� the ECG language is predicate-centered,

� predicates are concepts as well, which are graphically distinguished from other types

of concepts,

� several categories of concept and relation types are distinguished.

50



3.6 Summary of the results

In this chapter, the developed ECG semantic model has been introduced and analyzed

concerning expressiveness. The new scientific results can be summarized as follows.

Thesis 1. [8],[9],[10]

A novel semantic model is developed, called ECG, which has a logic-based ECG-HOPL and

a semantically equivalent graphical ECG diagram representation. The model satisfies the

requirements of the knowledge representation format in the investigated grammar induction

system, and can be used as an ontology modeling language because its main building blocks

are concepts and their relationships. It is predicate-centered and it defines two levels and

distinct elements for describing the different phases of conceptualization. It provides high

levels of functionality, flexibility and extendibility. It is computationally tractable while

highly expressive, that is it covers a wide range of linguistic phenomena.

Consequences

1. ECG can be used to describe the semantics of the examined grammar learning agent’s

internal knowledge model.

2. ECG can be applied as a sentence-level semantic annotation language, because every

ECG-HOPL statement can be semantically unambiguously rendered into an NL

sentence examined and every NL sentence under examination can be approximated

by an ECG-HOPL statement.

< Statement 1 >

3. Since ECG can be considered as an ontology modeling language, ECG diagram can

be used for visual ontology representation. The generation of ECG diagram graphs

can be accomplished by an O(n2) algorithm.

4. ECG-HOPL can be defined with CFG, which proves that the syntax of ECG is sim-

ple enough so that a computationally effective learning algorithm can be constructed

for inducing a set of grammar rules from ECG, and consequently from sentences an-

notated by ECG. < Statement 3 >
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Chapter 4

Developing a Grammar Representation Model

Combine the extremes, and you will have the true center.

Karl Wilhelm Friedrich Schlegel

As mentioned earlier, the aim is to develop a new general statistical rule learning meth-

odology that utilizes semantic information as well. In the scope of the dissertation, the

rules to be learnt are the grammars of natural languages, since these are the most com-

plex rule systems and are therefore suitable for being the basis of a general model. For

the grammar induction system investigated, a common formalism is needed to represent

instance-level ontologies in conjunction with the corresponding symbolic descriptions of

the agent’s observations.

In terms of the present research, semantic models are represented by ECG diagrams, the

nodes of which are labeled with ECG concepts, and the edges of which are labeled with

semantic roles. The basic ECG diagram structures are shown in Figure 3.3 on page 43.

Note here, that in practice the node and edge labels are ECG identifiers (see Chapter 5).

Their symbolic names serve only better understanding.

Symbolic descriptions are given by a restricted NL, that is only expressions being definite

and unambiguously interpretable are taken into account. Consequently, the sentences

involved are factual assertions with true logical values. In terms of the actual task, the

symbolic language applied should meet the following requirements:

– the range of linguistic phenomena covered by the symbolic language should not

exceed that of the ECG-HOPL language (see in Section 3.3 on page 33);

– the symbolic language should consist of symbolic terms, referring to ECG concepts,

and true symbolic assertions on terms; and

– each symbolic term should have exactly one conceptual representative within a de-

scription.

For practical purposes, the formalism that is able to represent semantic and symbolic

information jointly, in a common framework – which will be the input of grammar in-

duction – is desired to be a grammar formalism. By definition, grammar formalisms are
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artificial languages whose purpose is to characterize precisely other artifical or natural

languages. As mentioned in Section 2.3 on page 22, formal grammars describing natural

languages lie between the context-free and context-sensitive grammars in the Chomsky

hierarchy. A proposed formalism is tree-adjoining grammars (TAGs) [Joshi et al., 1975],

which are mildly context-sensitive and have several variants. In NLP, the most influential

ones are lexicalized TAG (LTAG) [Joshi & Schabes, 1997], feature-based TAG (FTAG)

[Vijay-Shanker, 1987], and synchronous TAG (STAG), which is specifically designed for

machine translation [Shieber & Schabes, 1990]. They are brought into focus for the pur-

poses of the present research first of all because they satisfy the criterion of computational

efficiency while covering a wide range of natural language constructions; and their tree

structure resembles the ECG graph representation of ontology models.

The weak points of the original TAG formalism are the representation of discontinuous

constructions and word order. In this chapter, it is shown that an adequate extension

of the TAG formalism makes it applicable for the problem at hand, that is for being

the common framework for the representation of ECG diagrams and the corresponding

symbolic language units. However, the implementation of the algorithms developed will

take place in a later stage of the project, directly connected to grammar induction.

4.1 Introduction to the TAG formalism

A TAG(G) grammar is defined as a quadruple 〈NT, TS, T (I), T (A)〉, so that TS and NT

are disjoint alphabets of terminals and nonterminals, respectively; T (I) is a finite set of

initial trees, and T (A) is a finite set of auxiliary trees. The trees in T (I)∪T (A) are called

elementary trees. Initial trees have the characteristics that all internal nodes are labeled by

nonterminals; and all leaf nodes are labeled by terminals, or by nonterminal nodes marked

for substitution (↓). Auxiliary trees possess the same characteristics as initial trees do,

except for exactly one nonterminal node, called the foot node (marked by ∗), which must

match the root node and which can only be used to adjoin the tree to another node.

X

Y

Y X

Y

Figure 4.1 Substitution operation3

X

Y

Y X

Y

Y*

Y*

Figure 4.2 Adjunction operation3

3[Joshi & Schabes, 1997]
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Two operations are defined in the TAG formalism, substitution and adjunction. In the

substitution operation (Figure 4.1), the root node of an initial tree is merged into a nonter-

minal leaf node marked for substitution (↓) in another initial tree, where the merger nodes

must match. In an adjunction operation (Figure 4.2), an auxiliary tree is grafted onto a

nonterminal node anywhere in an initial tree. The root and foot nodes of the auxiliary tree

must match the node of the initial tree at which the auxiliary tree adjoins. The subtree of

the initial tree, the root of which is the node where the auxiliary tree adjoins, is removed

from the initial tree, and the auxiliary tree is substituted for it instead; while this subtree

is substituted in the foot node of the auxiliary tree.

The phrase-structure tree set of a TAG(G), T(TAG(G)) is defined to be the set of all

derived trees starting from S-type initial trees in T (I) whose frontier consists of terminal

nodes (all substitution nodes having been filled). The string language generated by a

TAG(G), L(TAG(G)) is defined to be the set of all terminal strings on the frontier of the

trees in T(TAG(G)).

4.2 Grammar representation of the semantic model

Grammars, and theories of grammar, can be classified according to whether the basic unit

of sentence structure is the phrase, or the dependency between two sentence elements.

CFG and TAG are examples of phrase-structure grammars. On the other hand, depen-

dency grammar (DG) [Tesniére, 1959] is a dependency-based linguistic approach to the

description and analysis of natural language syntax. It is constituted by distinguishing

a head-dependent asymmetry, and describing the relations between a head (usually the

main verb) and its dependents in terms of semantically motivated dependency relations.

ECG fragment
semantic annotation

ECG fragment
semantic annotation

ECG-TAG
derivation tree

ECG-TAG
derivation tree

S-ECG-TAG
derivation tree

S-ECG-TAG
derivation tree

Symbolic sentenceSymbolic sentence

Figure 4.3 Joint representation of annotation and symbolic description

In NLP, the usual problem is how to map a syntactic dependency structure to a semantic

one. In other words, how to make use of the result of syntactic analysis in semantic analysis.

In the training phase of grammar induction, symbolic descriptions are assigned to instance-

level ECG diagrams representing the agent’s observations. Thus, the distinguishing feature

of the present work is the aim of finding a mapping from semantic (conceptual) dependency

structure represented by the ECG ontologies to a syntactic one. This means in practice

that a correspondence is sought for between ECG concepts and the syntactic units of

symbolic descriptions. The task can only be accomplished within a common framework
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that is based on ECG and that combines the levels of semantics and syntax (see Figure

4.3). For this purpose, a new tree-based formalism has been developed. In order to find

a matching between ECG concepts and the syntactic units of symbolic descriptions, an

ECG diagram needs to be converted first into the newly defined tree structure the nodes

of which are ECG concepts. The next step is then to find an algorithm that maps the

syntactic units of the corresponding symbolic description to the leaf nodes of the resulting

derivation tree.

4.2.1 Analysis of ECG diagram graphs

In the scope of the dissertation, semantic models are represented by ECG diagrams, the

nodes of which are labeled with ECG concepts, and the edges of which are labeled with

semantic roles.

Definition 2. An ECG diagram Γ = 〈V,A,R〉 is a directed edge-labeled graph, where

v ∈ V vertices are ECG concepts, and a ∈ A edges (arrows) are semantic relations labeled

with r ∈ R semantic roles.

Table 4.1 Incoming and outgoing edges of ECG diagram vertices

Vertex type Incoming edges Outgoing edges

Instance category concept ≥ 1 semantic role relations ≥ 1 isa relations

(FICN, FICT, FICR)

Primary class category ≥ 1 any relations ≥ 0 isa relations

concept (FMCR)

Abstract class category ≥ 1 isa relations and ≥ 0 isa relations

concept (AMCR) ≥ 0 semantic role relations

Kernel predicate concept none ≥ 1 semantic role relations and

(FMPR*) ≥ 0 isa relations

Primary predicate concept ≥ 0 semantic role relations ≥ 1 semantic role relations and

(FMPR) ≥ 0 isa relations

Abstract predicate concept ≥ 1 isa relations and ≥ 0 any relations

(AMPR) ≥ 0 semantic role relations

Table 4.2 Edges connecting ECG diagram vertices

Relation type Source vertex Target vertex

Specialization FICN, FICT, FICR FMCR

FMCR, AMCR AMCR

FMPR, AMPR AMPR

Semantic role FMPR, AMPR FICN, FICT, FICR

FMPR, AMPR FMCR, AMCR

FMPR, AMPR FMPR, AMPR

Within the diagrams of ECG fragments, d−(Γ )(vkernelpredicate) = 0, that is the number of

incoming edges into vertices representing kernel predicate concepts equals 0. Otherwise,
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there may be more than 1 parent nodes (i.e. incoming edges) for any other node. Also, the

number of outgoing edges from any vertex is arbitrary. The incoming and outgoing edges

of the vertices are summarized in Table 4.1, while Table 4.2 shows which vertex types are

allowed to be connected by each edge type.

By definition, an ontology is based on a taxonomy, that is a hierarchy of concepts. Since

ECG is an ontology model, the next statement holds.

Statement 4. The diagram of a primary-level ECG fragment – representing an actual

observation of the agent – is an acyclic graph, thus it can be converted to a tree structure

the root of which is the kernel predicate.

4.2.2 Definition of the ECG-TAG formalism

For the tree-based representation of ECG diagrams, first of all the TAG formalism needs

to be amended by edge labels. Furthermore, the new ECG-TAG model re-defines the trees

(nodes and edges) of the TAG formalism, so that node and edge labels are coming from

ECG ontologies. On the other hand, the new formalism inherits the basic TAG operations

of substitution and adjunction.

Definition 3. ECG-TAG(G) = 〈V,E,R+, T (S), T (I), T (A)〉 is an ECG-TAG grammar,

so that V is the set of vertices where V = C∪{S}, where C is a finite set of ECG concepts

and S is the start symbol; E is the set of edges where E = RS ∪ Ē, where RS is a finite

set of ECG relationships and Ē is a finite set of edges for connecting predicate concepts;

edges in E are labeled with elements from R+ = R ∪ {predicate} respectively, where R is

a finite set of semantic roles; T (S) is the single-element set of the base S-type tree, T (I)

is a finite set of initial trees, and T (A) is a finite set of auxiliary trees.

The C set of ECG concepts consists of two subsets: CC denotes the subset of category

concepts, while PC is the subset of predicate concepts. Similarly, the RS set of ECG

relationships can be divided into two subsets: RR denotes the subset of semantic role

relations, while SR is the subset of specialization (isa) relationships. The ECG-TAG

derivation trees are constructed from the following trees by using the operations of sub-

stitution and adjunction defined in the original TAG formalism.

� The root node of the base S-type tree is denoted by S (start symbol). One leaf

node of the tree is the kernel predicate from PC, while all the other leaf nodes are

elements of C and the edges are elements of RR∪ {ē}, where ē ∈ Ē. The leaf nodes

may be marked for substitution (↓).

� Initial trees are constructed on the basis of the specialization relationships in the

underlying ECG ontology. Therefore the nodes are elements of C and the edges are

elements of SR; and the leaf nodes may be marked for substitution (↓).

� Auxiliary trees have exactly one foot node (marked ∗), which must match the root

node and which can only be used to adjoin the tree to another node of another
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tree. Auxiliary trees are constructed on the basis of the non-kernel predicates of

the underlying ECG ontology. Therefore one leaf node of each auxiliary tree is a

non-kernel predicate from PC, while all the other leaf nodes are elements of C and

the edges are elements of RR∪{ē}, where ē ∈ Ē; and the leaf nodes may be marked

for substitution (↓).

Statement 5. The resulting formalism is, at the same time, dependency-based in the

sense that edge labels represent semantic dependency relations.

In the ontology model, the kernel predicate is seen as the highest level concept (in the

scope of a fragment), governing a set of complements, which govern their own complements

themselves. Therefore each semantic relation represents the local semantic dependency of

the child node from its parent node.

4.2.3 Mapping ECG diagram into ECG-TAG formalism

Mapping ECG diagram structures into ECG-TAG structures involves the mapping of ECG

concepts and relationships, so that ECG concepts correspond to nodes and relationships

correspond to labeled edges in the ECG-TAG trees; where an ECG-TAG derivation tree

describes an ECG fragment. Other ECG container elements can be represented by the

combinations of derivation trees.

This section examines the assignment g : ECG diagram→ ECG-TAG. The assignment

is said to be a mapping, if every ECG diagram has a corresponding ECG-TAG structure.

This mapping is surjective, if also every ECG-TAG structure has a corresponding ECG

diagram. It is bijective, if the mapping is mutually unambiguous. For the analysis, the

basic ECG diagram structures (see Figure 3.3 on page 43) are considered and mapped into

ECG-TAG structures.

1) Representation of predicates and arguments.

When representing predicate schemas, there is a difference between the mapping of the

kernel predicate and other predicates. Namely, the kernel predicate is always included in

the base S-type ECG-TAG tree, while other predicates form parts of separate ECG-TAG

auxiliary trees the roots (and the identical foot nodes) of which are arbitrary leaf nodes

in other trees. See Figure 4.4.

a) Kernel predicate with argument b) Non-kernel predicate with argument

kernel
predicate

kernel
predicate

argumentargument

role

ECG Diagram ECG-TAG

S

kernel
predicate

rolepred.

argument

S-type tree
non-kernel
predicate

non-kernel
predicate

argumentargument

role

ECG Diagram ECG-TAG

root node

nk
predicate

role

pred.

arg.

Auxiliary tree

arg.

role

Figure 4.4 Mapping ECG diagram predicates and arguments to ECG-TAG
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2) Assigning concepts to higher-level concepts.

Any concept can be assigned to a higher-level concept of corresponding type through a

specialization relationship. This kind of structure shows differences in the ECG diagram,

because of the dissimilar representation of predicate and non-predicate concepts. However,

their mapping to ECG-TAG yields the same initial tree structure with distinct nodes. See

the illustration in Figure 4.5.
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Figure 4.5 Mapping ECG diagram specialization relationships to ECG-TAG

3) Representing predicate as argument.

In the ECG model, non-kernel predicates can be arguments of other predicates. Again,

there is a difference in mapping between the cases when the kernel predicate has a predic-

ate argument, or when a non-kernel predicate has a predicate argument. See Figure 4.6.

The mapping of this structure resembles the case in 1).
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Figure 4.6 Mapping ECG diagram predicates as arguments to ECG-TAG

4) Representing common arguments.

Figure 4.7 shows a complex predicate schema, where the kernel predicate and a non-kernel

predicate share the same argument. This structure could be further complicated by as-

suming that both predicates are non-kernel predicates. In this case two auxiliary trees

need to be constructed, where the common argument is the root and foot nodes in one of

them. The root and foot nodes of the other auxiliary tree are not specified in the example.
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5) Representing groups of arguments.

Figure 4.8 displays the mapping of argument groups. Again, a distinction should be made

between the case when the group of arguments is connected to the kernel predicate, and

the case when it belongs to a non-kernel predicate. This structure should be extended

with the remark that non-kernel predicates can also be elements of argument groups.
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Figure 4.8 Mapping ECG diagram groups of arguments to ECG-TAG

Statement 6. This analysis shows that every ECG diagram structure can be mapped into

a corresponding ECG-TAG structure, that is g is a lossless mapping.

If ECG diagram constituents (concepts and relationships) are given by their category

types, an ECG-TAG structure may have more than one corresponding ECG diagram

structures. In this case g is a surjective mapping. On the other hand, if ECG diagram

components are given by their identification codes, every ECG-TAG structure has ex-

actly one ECG diagram correspondent. In this case g is a bijective function, therefore
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g−1 : ECG-TAG → ECG diagram also exists that is again an unambiguous mapping.

See the difference between the two representations of ECG elements in Chapter 5.

The algorithms specifying the steps of mapping an ECG fragment diagram into an ECG-

TAG derivation tree can be given as follows.

1. Construct a base S-type tree with root S (see Algorithm 4.1), the leaf nodes of which

are the kernel predicate and the (arbitrary number) connected concepts. The edges

are labeled according to the semantic role relationships. The tree is built up from

left to right so that the first node is the predicate concept with the label ’predicate’.

The order of the other nodes is arbitrary.

Input: ECG fragment diagram

Output: S-type ECG-TAG tree

Stree.root = S

i = 1

Stree.leaf[i] = kernelpredicate

Stree.edge[i] = ’predicate’

relation[ ] = {Find all role relations where domain = kernelpredicate}
foreach j ∈ relation do

i = i + 1

Stree.leaf[i] = relation[j].range

Stree.edge[i] = relation[j].label

Algorithm 4.1 Creation of the base S-type ECG-TAG tree

2. Create the initial tree set based on the specialization relations in the ECG diagram

(see Algorithm 4.2).

Input: ECG fragment diagram

Output: ECG-TAG initial tree set

relation[ ] = {Find all isa relations}
foreach j ∈ relation do

Itree[j].root = relation[j].domain

Itree[j].leaf = relation[j].range

Itree[j].edge = ’isa’

Algorithm 4.2 Creation of the ECG-TAG initial tree set

3. Create the auxiliary tree set (see Algorithm 4.3) on the basis of the non-kernel

predicate concepts having arguments in the ECG diagram. These trees are built up

from left to right so that the first node is the predicate concept, and the edges are

labeled according to the semantic role relationships. The root of the auxiliary tree

must match a leaf node in another tree, and the frontier node with the same label

is its foot node.
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Input: ECG fragment diagram, S-type ECG-TAG tree, ECG-TAG initial tree set

Output: ECG-TAG auxiliary tree set

nodelist = {Find all leaf nodes in Stree and Itree[ ]}
i = 1

nkp nodes[ ] = {Find all nonkernel predicates in ECG diagram}
foreach k ∈ nkp nodes do

relation[ ] = {Find all role relations in ECG diagram where domain = nkp nodes[k]}
if relation is not empty then

Atree[k].leaf[i] = nkp nodes[k]

Atree[k].edge[i] = ’predicate’

if nkp nodes[k] is in nodelist then

Atree[k].root = nkp nodes[k]

foreach j ∈ relation do

i = i + 1

Atree[k].leaf[i] = relation[j].range

Atree[k].edge[i] = relation[j].label

if Atree[k].root is empty AND relation[j] is in nodelist then

Atree[k].root = relation[j].range

Algorithm 4.3 Creation of the ECG-TAG auxiliary tree set

4. Build the derivation tree (see Algorithm 4.4) starting from the S-type tree, by ap-

plying the operations of tree adjoining and substitution successively, in this order.

Both operations are implemented as functions returning the modified versions of the

trees given as their first argument. The returned tree structures are used in the

succeeding iteration step. During tree adjoining, it may happen that an auxiliary

tree cannot be adjoined for the first time. In this case the tree must be added to the

end of the auxiliary tree set to get another chance to be adjoined later.

Input: ECG-TAG S-type tree, ECG-TAG initial tree set, ECG-TAG auxiliary tree set

Output: ECG-TAG derivation tree

foreach i ∈ Atree do

foreach j ∈ Dtree.leaf do

if Atree[i].root == Dtree.leaf[j] then

Adjoin(Dtree.leaf[j], Atree[i])

break

Atree = Atree + Atree[i]

foreach i ∈ Itree do

foreach j ∈ Dtree.leaf do

if Itree[i].root == Dtree.leaf[j] then

Substitute(Dtree.leaf[i], Itree[j])

break

Algorithm 4.4 Construction of the ECG-TAG derivation tree

The mapping algorithms can be evaluated by the number of execution steps. The size of

the input ECG fragment diagram can be characterized by the number of ECG diagram

elements (n), amongst which the number of concepts and the number of relations can be

approximated by n/2, respectively. Using these estimations, the S-type ECG-TAG tree

and also the ECG-TAG initial tree set are created with a cost of O(n). For the number
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of elements in the S-type ECG-TAG tree (k), and for that of the ECG-TAG initial tree

set (l) hold, that k ≤ n and l ≤ n. Thus, the ECG-TAG auxiliary tree set is constructed

with a cost of 2n+ n+ (n/2)n+ (n/2)2 ≈ O(n2).

The ECG-TAG derivation tree is constructed from the tree set generated in Algorithms

1-3. The number of trees in the ECG-TAG initial tree set must be equal to the number of

specialization relationships in the ECG diagram, which is n/2. Similarly, the number of

trees in the ECG-TAG auxiliary tree set must equal the number of non-kernel predicates

in the ECG diagram, which is approximated by n/2. However, in the case of tree adjoin-

ing the sequence in which the auxiliary trees are adjoined does matter. The algorithm

solves this problem in a way that virtually doubles the size of the auxiliary tree set to n

in the worst case. The number of leaf nodes in the ECG-TAG derivation tree must be

less than or equal to the number of concepts in the ECG diagram, which is n/2. There-

fore the cost of the algorithm constructing the ECG-TAG derivation tree can be given as

n(n/2) + (n/2)2 ≈ O(n2).

The cost of mapping ECG fragment diagrams into ECG-TAG derivation trees results from

the summation of the costs of Algorithms 4.1-4.4, which yields an approximation of O(n2).

Appendix C shows two examples of ECG-TAG derivation tree construction.

4.3 Grammar representation of the symbolic description

4.3.1 Representation of symbolic language

The symbolic representation of ECG model fragments – i.e. of the agent’s observations –

is defined by a symbolic language, which is specified by the following characteristics.

– It is a restricted NL, that is only expressions being definite and unambiguously

interpretable are taken into account. Consequently, the sentences involved are factual

assertions with true logical values.

– The range of linguistic phenomena covered by the symbolic language is the same as

that of the ECG-HOPL language (see in Section 3.3 on page 33).

– It consists of symbolic expressions of two kinds:

– symbolic terms, referring to ECG concepts, and

– true symbolic assertions on terms, i.e. sentences.

The ECG model in Figure C.1 can be given by several true symbolic assertions, e.g.:

1. A circle is in a triangle.

2. A circle is located in a triangle.

3. A black circle can be found in the triangle.

4. A black colored circle is in a triangle to be found.

5. In a triangle stands a circle.

6. There is a circle in the triangle.
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The symbolic terms in these examples and the referred ECG concepts are listed in Table

4.3. From this, the following characteristics of symbolic terms can be inferred:

� they may be multi-word representations, or

� their components may not appear continuously.

It is worth mentioning here that there may be ECG concepts that do not have a represen-

tant at the symbolic level at all.

Statement 7. The assignment of symbolic terms to ECG concepts, that is h : ST → C

is a mapping which is neither surjective, nor injective. Namely, from the characteristics

of symbolic terms follows that ∀st ∈ ST ∃c ∈ C, while ¬∀c ∈ C ∃st ∈ ST .

Since, in symbolic expressions both the symbols and the arrangement of symbols commu-

nicate meaning, the following problems need to be addressed:

� the mapping of symbolic terms into ECG concepts, and

� the arrangement (order) of symbolic terms.

Table 4.3 Correspondence of ECG concepts and symbolic terms

ECG concept Symbolic term

FMPR 1: isIn is in

is located in

can be found in

is in . . . to be found

in . . . stands

there is . . . in

FMPR 2: hasColor colored

FMPR 3: hasColor –

FMCR 1: Circle a circle

a . . . circle

FMCR 2: Triangle a triangle

the triangle

FMCR 3: Black black

FMCR 4: White –

4.3.2 Definition of the S-ECG-TAG formalism

For handling the problem of mapping symbolic terms into ECG concepts, which are the

nodes of the ECG-TAG derivation trees, each ECG-TAG derivation tree (representing the

semantic level) needs to be vertically expanded by a symbolic level. As a consequence

of the characteristics of symbolic terms, at this level one or more nodes may correspond

to each symbolic term, which are all linked to the leaf nodes of the semantic level. This

extended formalism combines the levels of semantics and syntax, and got the name S-

ECG-TAG, that is the ECG-TAG formalism is extended with a symbolic level.
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Formally, the S-ECG-TAG formalism extends the ECG-TAG formalism with the SN fi-

nite set of symbolic-level nodes. A sn ∈ SN symbolic-level node is represented by a finite

sequence of words delimited by spaces, i.e. sn = w1 w2 . . . , where w words are finite

sequences over Σ, where Σ denotes the finite character set of the symbolic language. A

st ∈ ST symbolic term corresponding to an ECG concept (and an ECG-TAG semantic-

level node) is defined as a finite set of symbolic-level nodes, that is st = 〈sn1, sn2, . . . 〉
which can be an empty set.

The edges connecting symbolic-level nodes to ECG-TAG semantic-level leaf nodes are

labeled by precedence relations representing the true order of word sequences in the cor-

responding symbolic sentence.

Definition 4. S-ECG-TAG(G) = 〈V,E,R+n, T (D)〉 is a S-ECG-TAG grammar, so that

V is the set of vertices where V = C∪{S}∪SN , where C is a finite set of ECG concepts, S

is the start symbol and SN is a finite set of symbolic-level nodes; E is the set of edges where

E = RS ∪ Ē ∪ Ẽ, where RS is a finite set of ECG relationships, Ē is a finite set of edges

for connecting predicate concepts and Ẽ is a finite set of edges for connecting symbolic-

level nodes; edges in E are labeled with elements from R+n = R∪{predicate}∪{n1 . . . nk}
respectively, where R is a finite set of semantic roles; and T (D) is the single-element set

of the derivation tree.

4.3.3 Assignment of symbolic terms to ECG concepts

The aim is to represent symbolic terms and ECG concepts in a common formalism. After

mapping ECG diagrams to ECG-TAG trees, ECG concepts are the nodes of the cor-

responding ECG-TAG derivation tree. The actual task is to develop an algorithm that

automatically assigns the terms of the corresponding symbolic sentence to the leaf nodes

of the ECG-TAG derivation trees and codes word order locally. This mapping algorithm

is based on statistical methods, that is there are no predefined global rules for the as-

signment and the agent has no apriori knowledge about the grammar of the symbolic

language. The agent does not perform the syntactic and morphological analyses of the

symbolic description, either. The algorithm that solves the problem involves the following

steps (see Algorithm 4.5).

1. Select an ECG-TAG derivation tree (T (D)base) and the corresponding symbolic sen-

tence the units of which are to be mapped into ECG concepts.

2. Search in the S-ECG-TAG database for matching patterns. If the search fails, con-

tinue with the next step.

3. Find a set of reference ECG-TAG derivation trees (T(D)ref ) so that the following

requirements are met.

� The number of reference ECG-TAG derivation trees in T(D)ref should be equal

to the number of ECG concepts in T (D)base.
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� The reference ECG-TAG derivation trees should be selected in accordance with

the criterion that the number of ECG concepts in each T (D)ref ∈ T(D)ref
equals the number of ECG concepts in T (D)base.

� Each T (D)ref ∈ T(D)ref should differ from T (D)base in exactly one ECG

concept, so that all other T (D)ref ∈ T(D)ref contains this ECG concept.

Input: ECG-TAG derivation tree and its symbolic description

Output: S-ECG-TAG derivation tree

if Find(DT-base, S-base, S-ECG-TAG-DB) then

return S-ECG-TAG

else

S-ECG-TAG = DT-base

words[ ] = Decompose(S-base)

repeat

failure = false

if Generate(DT-ref[ ],S-ref[ ]) then

foreach i ∈ DT-ref do

diff-concept = Compare(DT-base, DT-ref[i])

diff-units[ ] = Compare(S-base, S-ref[i])

foreach j ∈ diff-units do

if diff-units[j] is not in a symbolic node then

CreateSymbolicNode(diff-units[j], S-ECG-TAG)

edgelabel = Search(diff-units[j], S-base)

LinkSymbNode(diff-units[j], diff-concept, edgelabel, S-ECG-TAG)

else

failure = true

break

foreach k ∈ words do

if words[k] is not in a symbolic node then
if words[k + 1] is in a symbolic node and linked to a category concept

then
ModifySymbNode(attach words[k] to words[k+ 1] in S-ECG-TAG)

else
failure = true

else

exit

until failure is true

Algorithm 4.5 Generation of the S-ECG-TAG derivation tree

4. Compare T (D)base to each T (D)ref ∈ T(D)ref . In each iteration step, the two ECG-

TAG derivation trees differ in only one node and consequently the differing symbolic

word sequence(s) (which are determined by string comparison) should correspond to

the symbolic terms representing the differing nodes. In the S-ECG-TAG derivation

tree each word sequence is located in a separate symbolic-level node which should

be linked to the corresponding semantic-level node. The edges connecting symbolic-

level nodes to semantic-level nodes need to be labeled according to the order of word

sequences in the symbolic sentence.
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5. A problematic phenomenon is the handling of articles. In most cases, articles do not

change together with the symbolic representants of ECG concepts. Thus, they are

not assigned to any of the semantic-level nodes. To solve this problem, the algorithm

uses the following assumption. If – in the symbolic sentence – the word directly

preceding the symbolic representant of an ECG category concept is not assigned to

any of the S-ECG-TAG symbolic-level nodes, then this word should be concatenated

with the symbolic term representing the ECG category concept examined.

6. If not all symbolic sentence units could be unambiguously located in one of the nodes

of the S-ECG-TAG derivation tree, select a new (T(D)ref ) reference set and repeat

steps 4 and 5. If a reference set cannot be generated, select another ECG-TAG

derivation tree (T (D)base) and execute the algorithm again.

If s denotes the size of the S-ECG-TAG database, m is the number of words in the

symbolic sentence attached to the ECG-TAG derivation tree under examination, and n

denotes the number of leaf nodes in this tree, the cost of the algorithm is calculated as

s+(n× (m/n))+m, where m/n is the average number of sentence units (word sequences)

per leaf node. Initially, when the S-ECG-TAG database includes none or a small number

of successful assignments, the performance of the algorithm depends to a large extent on

the method of selecting an appropriate reference ECG-TAG derivation tree set. Later

on, as the size of the S-ECG-TAG database increases, the chance of finding matching

patterns increases too, and thus the number of execution steps of the algorithm can be

more precisely characterized by the cost of searching for an exact match in the S-ECG-TAG

database. Appendix D shows an example assignment.

4.3.4 Learning word orderings

Knowledge of a given language involves knowing the vocabulary and the rules for build-

ing expressions from vocabulary items. In the actual task, word sequences compose the

vocabulary of the given language that are stored in the symbolic-level nodes of the S-

ECG-TAG derivation trees. Here, the labels of the edges connecting symbolic-level nodes

to semantic-level nodes represent a valid ordering of the given word sequences.

The task of grammar induction is to infer a grammar (a set of rules) that can generate all

the valid sentences in the given symbolic language. For this, the list of valid orderings needs

to be generated from the S-ECG-TAG derivation tree database. Taking a valid ordering,

the sentence determines a valid sequence of state transitions where a state corresponds

to a word sequence (stored in a symbolic-level node sn). It is assumed that every state

may occur only once, there is no repetition. If sni denotes a state, the sequence of n

events is represented as [Jurafsky & Martin, 2000]: sn1, . . . , snn or snn1 . The probabilities

of sequences can be computed by using the chain rule of probability for decomposition

[Manning & Schütze, 1999]:

P (snn1 ) = P (sn1)P (sn2|sn1)P (sn3|sn2
1) . . . P (snn|snn−1

1 ) = Πn
k=1P (snk|snk−1

1 ). (4.1)
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The bigram model is an N-gram model where the probability of a state is approximated

by the preceding state [Jurafsky & Martin, 2000]:

P (snn|snn−1
1 ) ≈ P (snn|snn−1). (4.2)

The property that the probability of a state depends only on the previous state is called

Markov property and has the following formulation [Krenn & Samuelsson, 1997]:

P (ζt+1 = snit+1 |ζ1 = sni1 , . . . , ζt = snit) = P (ζt+1 = snit+1 |ζt = snit), (4.3)

where ζ1, . . . , ζn are random variables. If the probability of a state depends only on

the previous state, the model is called first-order Markov model. The Markov model

method [Markov, 1913] is essential in speech recognition, handwriting recognition, machine

translation, spelling correction, part-of-speech tagging, natural language generation and

in any tasks where words have to be identified from noisy, ambiguous input.

In a Markov chain each state is associated with a finite set of signals. After each transition,

one of the signals is emitted. In the present model, the signal-set of a state contains only

one signal that corresponds to the state itself. As an example, consider the following two

sentences where the identified word sequences are separated by brackets.

1. (A black) (circle) (stands in) (a white) (triangle).

2. (A white) (triangle) (includes) (a black) (circle).

The state transition matrix related to these sentences can be found in Table 4.4. In this

matrix, the S symbol denotes the start state, the beginning of the sentence. The rows of

the matrix correspond to the initial states and the columns denote the end states. The

values in the matrix cells are equal to the frequency of the corresponding state transition.

Taking the restriction that a state can not be repeated, this matrix will generate exactly

the given training sentences.

Table 4.4 State transition matrix for the given sentences

S a black circle stands in a white triangle includes

S 1 1

a black 2

circle 1

stands in 1

a white 2

triangle 1

includes 1
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4.4 General assessment

The S-ECG-TAG grammar formalism is an edge-labeled lexicalized tree-based represen-

tation having two levels. At the semantic level the nodes correspond to ECG concepts,

while the edges represent ECG relationships (specialization or semantic role relations).

At the symbolic level the nodes include word sequences, while the edges are labeled by

precedence relations representing the true order of word sequences in the corresponding

symbolic sentence. The most characteristic features of the formalism can be summarized

as follows.

1. The new formalism is TAG-based because it uses the same tree set (with different

interpretation) and the same operations for tree construction as the original TAG

formalism.

2. At the same time, it is also dependency-based in the sense that edge labels represent

semantic dependency relations (at the semantic level) (Statement 5).

3. The S-ECG-TAG formalism combines the levels of semantics and syntax. Semantic-

level trees are constructed from ECG diagram graphs with an O(n2) algorithm where

n is the number of ECG diagram elements (Statements 4 and 6). Symbolic terms are

then assigned to the semantic-level tree nodes by an incremental learning process.

4. At the symbolic level, the formalism can represent discontinuous constructions by

sibling nodes, and can encode word order locally for each node by edge labels.

4.5 Related work

The weak points of the original TAG formalism are the representation of discontinuous

constructions and word order. [Rambow & Joshi, 1997] compares TAGs and dependency

grammars from the perspective of word order variation. It has been observed that the

TAG derivation tree resembles dependency structure, so it can be used as a dependency

tree. In TAG-based dependency grammar [Joshi & Rambow, 2003] the idea is to define

a grammar with elementary dependency trees which encode both dependency and word

order, and which are combined using well-defined new operations. This approach means

that all word order phenomena are expressed locally in the elementary trees; there are

no global word order rules. The trees (in their graphical representation) fully specify the

ordering of all the nodes in the tree. The work was originally inspired by the desire to

co-locate more than one word in a structure in order to represent multi-word lexemes and

idioms.

The TAG formalism was originally designed for the representation of syntax. In recent

years, Kallmeyer and her collaborators have been involved in research on logic-based TAG

semantics [Kallmeyer, 2002] through a series of papers using LTAG, FTAG, multicompo-

nent TAG (MTAG) and STAG. They work on a syntax-semantics computation system,

defining a set of desirable properties that such a system should have [Kallmeyer, 1997]:
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1. computation of the semantics of a sentence should rely only on the relationships

expressed in the TAG derivation tree;

2. the generated semantics should compactly represent all valid interpretations of the

input sentence; and

3. the formalism should not increase the expressivity of the TAG formalism.

The present approach is the opposite of the one outlined in [Kallmeyer, 1997], by comput-

ing a syntactic level on the basis of semantics using statistical methods. Nevertheless, the

system modeled can be evaluated according to the above mentioned requirements.

1. The generated syntactic level encodes the true structure of the corresponding sym-

bolic sentence via edge labels.

2. A state transition matrix stores all the valid orderings of the word sequences.

3. The expressiveness of the S-ECG-TAG and the ECG-TAG formalisms is the same.

The TAG-based and dependency-based representations of the ECG model are thoroughly

examined and described in [7]. In [6], a dependency-based mapping between symbolic

language elements and ECG concepts is investigated, and an algorithm for learning the

ordering and transformation of words is also given. [11] specifies an algorithm for infer-

ring a PCFG grammar from unannotated positive linguistic data, that can serve control

purposes in comparative analyses.

4.6 Summary of the results

In this chapter, the grammar formalism proposed for representing the semantic model

developed and its symbolic language description in a common framework has been intro-

duced, and the algorithms executing the assignments have been theoretically specified.

Their implementation will be performed in a later stage of the research project, directly

connected to grammar induction. The new scientific results can be summarized as follows.

Thesis 2. [7]

ECG fragment diagrams are acyclic graphs, therefore they can be converted to a tree struc-

ture the root of which is the kernel predicate. The mapping is proved to be lossless and is

accomplished by an O(n2) algorithm, where n is the number of ECG diagram elements.

The new ECG-TAG formalism consists of edge-labeled lexicalized tree structures, the nodes

of which correspond to ECG concepts, while the edges represent ECG relationships. The

formalism is TAG-based, because it uses the same tree set (with different interpretation)

and the same operations for tree construction as the original TAG formalism. At the

same time, it is also dependency-based in the sense that edge labels represent semantic

dependency relations.

< Statements 4, 5, 6 >
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Thesis 3.

The algorithm that performs the assignment of symbolic sentence units to ECG concepts

results in a new grammar formalism, called S-ECG-TAG, which combines the levels of

semantics and syntax. The formalism extends the ECG-TAG formalism with a symbolic

level, where the nodes include word sequences, while the edges are labeled by precedence

relations representing the true order of word sequences in the corresponding symbolic sen-

tence. Hence, the symbolic level encodes word order locally and discontinuous constructions

are represented by sibling nodes.

< Statement 7 >

Consequences

1. The S-ECG-TAG formalism can be applied as a common framework for representing

ECG diagrams and the corresponding symbolic sentences.

2. The S-ECG-TAG formalism can be applied as a formal grammar to be learnt in the

grammar induction process, because word sequences that are stored in the symbolic-

level nodes of the S-ECG-TAG derivation trees compose the vocabulary of a given

language, while the labels of the edges connecting symbolic-level nodes to semantic-

level nodes represent a valid ordering of the given word sequences.
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Chapter 5

Conceptualization Using ECG Diagram Graphs

Learning without thought is labor lost.

Confucius

In terms of machine learning, concept formation (or conceptualization) is the process by

which an agent learns to sort specific experiences into general rules or classes. In order to

make learning feasible in complex domains, abstraction and generalization operators are

often applied to make the problem tractable. In [Ponsen et al., 2010], abstraction is given

as a technique to reduce the complexity of a problem by filtering out irrelevant properties

while preserving all the important ones necessary to still be able to solve a given problem.

At the same time, generalization is defined as a technique to apply knowledge previously

acquired to unseen circumstances or extend that knowledge beyond the scope of the ori-

ginal problem. Humans show great capability in abstracting and generalizing knowledge

in everyday life. A learning agent needs abstraction and generalization as well to deal

successfully with contemporary technological challenges, given the huge state and action

spaces that characterize real world problems. As a consequence, abstraction and gener-

alization have received significant attention in the machine learning research community,

recently.

Generalized knowledgeGeneralized knowledge

Set of instance-level
ontologies

Set of instance-level
ontologies

Set of environment
objects & relations

Set of environment
objects & relations

Pattern

recognition

Ass
ocia

tio
n,

genera
liz

atio
n

Figure 5.1 Conceptualization in the grammar learning agent examined

Projecting Peirce’s approach (see Section 2.1 on page 7) to the actual task, the process of

conceptualization in the grammar learning agent examined is shown in Figure 5.1. Here,

the dynamic object is the set of objects and relations existing in the investigated agent’s

environment. The immediate interpretant is the set of observations taken by the agent

(by detecting and mapping the objects and relations of the environment), which are given
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by instance-level ontology models. Dynamic interpretants are created after the success-

ive incorporation (association) and generalization of each perception. At the idealized

end of the process stands the final interpretant, which is a generalized description of the

environment elements observed. As can be seen, the two operations of association and

generalization together accomplish the process of conceptualization.

For the simulation of this process, the grammar learning agent examined is endowed with

the capabilities of pattern recognition, association and generalization. Thus, it is able to

– recognize and map the objects of its direct environment and their relations into

knowledge base items;

– incorporate and relate the information elements observed to its existing (and con-

tinuously evolving) knowledge base; and

– create new (not observed) higher-level concepts by extracting the common charac-

teristics of existing knowledge items.

The agent maps its observations into internal knowledge items which are instance-level

ontologies represented by ECG diagram graphs. Generally speaking, association is the

process of forming connections between new information elements observed and existing

items in the knowledge base. In the case of ECG diagram graphs, association is defined

as follows.

Definition 5. Association is the process by which an ECG diagram graph is matched to

and inserted in the knowledge base of previously matched and connected ECG diagram

graphs.

Within the framework of the dissertation, the notions of abstraction and generalization are

not separated, they are implemented in one operation. Namely, generalization is considered

as the process of extracting common significant elements by abstraction, where abstraction

is the process by which new higher-level concepts are derived from literal concepts or

other abstractions. For a given finite training set generalization is a finite gradual process.

Therefore generalized knowledge can only be obtained through several stages. The ECG

model defines three abstract elements which can be used in generalization, that is

� AMCR: abstract category concept,

� AMR: abstract semantic role relationship,

� AMPR: abstract predicate concept.

Table 5.1 Abstract element insertion rules

ECG graph element type Inserted abstract element type

Category concept types AMCR

(FICN, FICT, FICR, FMCR, AMCR)

Semantic role relation types AMR

(FSR, FMR, AMR)

Predicate concept types AMPR

(FMPR, AMPR)
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Thus, the process of generalization in ECG diagram graphs means the derivation of ab-

stract concepts and relationships from corresponding primary-level or other abstract ele-

ments (see Table 5.1). Accordingly, within the ECG model generalization can be inter-

preted in three levels.

1. At the first level higher-level concepts can be revealed based on the common char-

acteristics of existing concepts.

2. At the second level the substitutability of objects can be learned on the basis of the

semantic role relations defined by the predicate.

3. At the third level the frequent predicate schemas can be explored.

In the dissertation the first level is examined, therefore the following definition is used for

generalization.

Definition 6. Generalization is the process by which new higher-level ECG concepts are

created in the knowledge base of ECG diagram graphs incorporating the common signi-

ficant (frequently occuring) characteristics of the existing concepts, where the derivation

relationship is represented by specialization.

This process reduces the complexity of the knowledge base of ECG diagram graphs, since

the new higher levels include an ever decreasing number of concepts and relationships than

the underlying layers.

The aim of this chapter is to show how the knowledge base of the grammar learning agent

examined is built up of instance-level ontologies (represented by ECG diagram graphs),

each describing a snapshot taken of the environment. For this, the two operations of

association (i.e. matching and connecting ECG diagram graphs) and generalization which

involves abstraction (i.e. creating higher-level concepts) must be defined on ECG diagram

graphs. Prior to these definitions, a review of the literature concerning graph matching

and generalization is exposed.

5.1 Related works

5.1.1 Graph matching

Generally speaking, the graph matching problem (for unlabeled undirected graphs) can be

stated as follows. Given two graphs G1 = 〈V1, E1〉 and G2 = 〈V2, E2〉, the problem is to

find a bijective mapping f : V1 → V2 so that (u, v) ∈ E1 iff (f(u), f(v)) ∈ E2. When such

a mapping exists, this is called an isomorphism, and G1 is said to be isomorphic to G2. If

|V1| = |V2|, the problem is said to be exact graph matching. If V1 ⊆ V2 and E1 ⊆ E2, the

problem is said to be subgraph matching (or subgraph isomorphism). For labeled graphs,

the following requirements also need to be met:

– the label of vertex u must be the same as that of f(u) for all u ∈ V1;

– the label of edge (u, v) must be the same as that of (f(u), f(v)) for all (u, v) ∈ E1.
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A graph matching problem is considered to be inexact when isomorphism cannot be ex-

pected and the matching aims at finding the best, not necessarily bijective correspondence

between G1 and G2. The best correspondence of a graph matching problem is defined as

the optimum of some objective function (fitness function) which measures the similarity

between matched vertices and edges.

According to [Bodon, 2010], for the whole category of graph matching problems there

does not exist a general polynomial time algorithm. What is more, it has not been proven

yet that the complexity of the whole problem type is NP-complete. However, in the case

of small specific graphs there may exist algorithms by means of which isomorphism can

be decided in polynomial time. At the same time, the complexity of subgraph matching

problems is proved to be NP-complete. The two most well-known algorithms for deciding

subgraph isomorphism are backtracking [Ullmann, 1976] and Nauty [McKay, 1981].

[Carroll, 2001] discusses the matching of RDF graphs. The paper traces the problem back

to the standard graph isomorphism problem, where a graph is considered to be unlabeled

and undirected. It argues that, within RDF models it is possible to encode an unlabeled

directed graph by using a single property label (e.g. rdf : value) for the edges and anony-

mous resources for each vertex. Undirected graphs can be obtained by encoding each edge

of the graph as two RDF triples, one in each direction. In this way, the standard graph

isomorphism algorithms, developed in the 1970’s, can be used effectively for comparing

RDF graphs.

Similarly, ECG diagrams are labeled directed graphs. They can be constructed as undi-

rected graphs by encoding the direction of an edge in its label. Edge labeling can also be

eliminated by encoding connections in vertex labels. Vertex labels, however, cannot be

omitted, therefore the standard graph isomorphism algorithms are not applicable for the

problem at hand. Since ECG diagrams are small specific graphs with rich labeling, it is

assumed that there exists an algorithm that decides isomorphism within acceptable time.

5.1.2 Generalization

Formal concept analysis [Ganter & Wille, 1999] gave birth to the notion of concept lattices,

which are used in many application areas to represent conceptual hierarchies among objects

and can also be used for representing concept generalization structures. In the literature,

there are two main variants of concept set building algorithms. The methods of the first

group work in batch mode, assuming that every element of the context table is already

present before starting the concept lattice building. The other group of proposals uses an

incremental lattice building method. In this case, the concept set is immediately updated

when the context is extended with a new object (see [Godin et al., 1995]).

One of the biggest problems in creating concept lattices is the large number of attributes.

Most of the proposals in the literature cope with this problem by eliminating the attributes

with low relevance value, thereby providing better efficiency at the expense of information

loss. [Kovács, 2006] presents a lattice building algorithm that does not use attribute re-

duction. In this proposal, it is assumed that there exists a lattice (called attribute lattice)
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containing the attributes from the objects. This lattice can be considered as a thesaurus

with generalization relationships among the attributes, and can be used to improve the

quality and usability of the lattice to be generated from the objects.

In terms of the actual task, ECG diagram graphs can be considered as objects and ECG

diagram elements (concepts and relations) can be seen as their attributes. In this case,

the attribute lattice shows the specialization and generalization relationships among ECG

elements, and the approach of [Kovács, 2006] could be adapted for the classification of

ECG diagram graphs.

[Fargues et al., 1986] describes a similar task to the one discussed in the dissertation. This

paper outlines the principles of a Prolog-like deductive system based on Sowa’s conceptual

graphs (CGs) within which a generalization algorithm is implemented. This CG processor

is the main component of the KALIPSOS general system for knowledge acquisition from

texts that is developed at IBM Paris Scientific Center. The success of this project moti-

vates the effort of simulating the process of conceptualization using ECG diagram graphs,

specified in the following sections.

5.2 The problem of matching ECG diagram graphs

Association is the process by which an ECG diagram graph is matched to the knowledge

base of previously matched and connected ECG diagram graphs. In other words, in this

process an ECG diagram graph is compared to a graph created incrementally from ECG

diagram graphs. Thus, the algorithm realizing this comparison belongs to the class of

subgraph matching algorithms. Prior to the specification of the association operation

which is based on the ECG diagram graph matching algorithm, the comparison of ECG

diagram graph elements needs to be studied.

5.2.1 ECG element category type lattice

In the ECG model, concepts and relations (elements) are given by two attributes: a type

and a caption, in the form of type : caption. Formally, each ec ∈ EC element category in

the ECG model is given as ec = typec : caption, where typec ∈ T and caption is a string

representing the name of the corresponding element category. The T set of ECG element

category types (see the ECG model terminology in Appendix A on page 101) is the union

of the subsets listed in Table 5.2.

Table 5.2 Classification of ECG element category types

Subset of T Element category types

Tcc: category concept types FICN, FICT, FICR, FMCR, AMCR

Tpc: predicate concept types FMPR, AMPR

Trr: semantic role relation types FSR, FMR, AMR

Tsr: specialization relation type FMI
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Statement 8. ECG element category types can be merged in a lattice (T,<), whose partial

ordering relation < can be interpreted as a categorical generalization relation.

The top and the bottom element categories of the (T,<) lattice are UNIV (the suprenum

element) and NIL (the infinum element), respectively. The generated lattice is displayed

in Figure 5.2. For reading the lattice, the notion of ’restriction’ must be introduced. Thus,

we say that an ECG element category ec2 can be ’restricted to’ another ECG element cat-

egory ec1, or, in other words, ec1 is a ’restriction of’ ec2 if typec1 < typec2 holds according

to the element category type lattice.

UNIV

AMCR AMPR AMR

FMCR FMPR FMR FMI

NIL

FICR

FICT

FICN

FSR

Figure 5.2 ECG element category type lattice

Based on the lattice, it is possible to exhibit the least common generalization lcg, and the

greatest common specialization gcs of two element categories ec1 and ec2:

lcg(ec1, ec2) = min{typec | typec1 <= typec and typec2 <= typec}; (5.1)

gcs(ec1, ec2) = max{typec | typec <= typec1 and typec <= typec2}. (5.2)

5.2.2 Correlations between ECG element instances

Analogously to the definition of ECG element categories, in an instance-level ECG diagram

graph each ei ∈ EI element instance is given as ei = typei : caption, where typei ∈ T ′

and caption is a string representing the name of the corresponding element instance. The

members of T ′ are constructed from the members of T augmented with a number. Thus,

an element instance type has the form typei = typec n, where typec is the corresponding

element category type and n is a numeric code, so that typei = typec n is a unique identi-

fier within the problem domain. In this way, element instances in an ECG diagram graph

can be unambiguously identified by their type attributes alone. The caption attribute

serves only better understanding and legibility. The element category type part of an

element instance type is denoted by [typei] = typec, while the numeric code of an element

instance type can be obtained as {typei} = n.
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Given two element instances ei1 and ei2, on the basis of the element category type lattice

the following ϕ ∈ Φ correlations can be identified between them.

1. Semantic comparability:

ei1 >< ei2 if lcg([typei1 ], [typei2 ]) 6= UNIV. (5.3)

The set of element instance pairs generated by ϕ = ’ >< ’ is denoted by SC.

2. Semantic incomparability:

ei1 <> ei2 if lcg([typei1 ], [typei2 ]) = UNIV. (5.4)

The set of element instance pairs generated by ϕ = ’ <> ’ is denoted by SNC.

3. Category-equivalence:

ei1 ∼ ei2 if [typei1 ] = [typei2 ]. (5.5)

The set of element instance pairs generated by ϕ = ’ ∼ ’ is denoted by CTE.

4. Equivalence:

ei1 = ei2 if typei1 = typei2 . (5.6)

The set of element instance pairs generated by ϕ = ’ = ’ is denoted by EQV .

5. Generalization:

Statement 9. ECG element instance types can be merged in a lattice (T ′,≺), whose

partial ordering relation ≺ can be interpreted as a categorical generalization relation.

The top and the bottom elements of the (T ′,≺) lattice are UNIV (the suprenum

element) and NIL (the infinum element), respectively. In terms of [Kovács, 2006],

this lattice is the attribute lattice on the basis of which we say that

ei1 ≺ ei2 if typei1 ≺ typei2 . (5.7)

If ei1 ≺ ei2 holds, we say that element instance ei2 can be ’restricted to’ element

instance ei1, or in other words ei1 is a ’restriction of’ ei2. This relation is asymmetric,

therefore ei2 ≺ ei1 needs to be also checked. The set of element instance pairs

generated by ϕ = ’ ≺ ’ is denoted by GEN .

Accordingly, all element instance pairs in a problem domain U fall into one of the disjunct

sets generated by the above defined ϕ correlations. The relationships between the sets are:

U = SC ∪ SNC, SC ∩ SNC = ∅ (5.8)

SC ⊃ CTE ∪GEN, CTE ∩GEN = ∅, EQV ⊂ CTE.

77



Based on the element instance type lattice, it is possible to exhibit the least common

generalization lcg, and the greatest common specialization gcs of two element instances

ei1 and ei2:

lcg(ei1, ei2) = min{typei | typei1 ≺= typei and typei2 ≺= typei}; (5.9)

gcs(ei1, ei2) = max{typei | typei ≺= typei1 and typei ≺= typei2}. (5.10)

5.2.3 Matching ECG diagram graphs

By definition, the matching operation determines an alignment for a pair of ontologies,

where alignment is the task of creating links (i.e. a set of mapping elements) between

two consistent ontologies. In the case of ECG diagram graph matching the aim is to find

the φ relation between two given graphs. The constituents of the graphs are given in the

form of type : caption, where the type attribute uniquely identifies the element instances.

Therefore ECG diagram graph matching can be traced back to the matching of element

instance types.

Definition 7. An ECG diagram graph can be defined as Γ = 〈V,A,R〉. V is the set of

vertices containing ei element instances where [typei] ∈ Tcc ∪ Tpc. A is the set of arrows

(directed edges) containing ei element instances where [typei] ∈ Trr ∪ Tsr. R is the set

of semantic roles with which the arrows in A are labeled. Thus, the f incidence function

assigns an ordered pair of vertices in V and a semantic role in R to each arrow in A, that

is f(ai) = (vi, vj , rk).

The ECG diagram graph matching algorithm takes two ECG diagram graphs Γ1 and Γ2

as input. The output of the ECG diagram graph matching algorithm is a set of mapping

elements denoted by M and a fitness value µ. A mapping element m ∈M is defined as a

triplet 〈ei1, ei2, ϕ〉, where

– ei1 ∈ Γ1 and ei2 ∈ Γ2 are the aligned element instances of the two ontologies, and

– ϕ is the correlation between ei1 and ei2.

The sequence in which the correlations are examined between two element instances – on

the basis of the element instance type lattice – should follow the steps below because for

a given element instance pair there may be more than one candidate correlations but only

one is chosen for the alignment. In this way, the resulting assignment is univalent.

1. Check ei1 >< ei2. If true then goto 2. If false then ϕ = ’ <> ’.

2. Check ei1 ∼ ei2. If true then goto 3. If false then goto 4.

3. Check ei1 = ei2. If true then ϕ = ’ = ’. If false then ϕ = ’ ∼ ’.

4. Check ei1 ≺ ei2. If true then ϕ = ’ ≺ ’. If false then goto 5.

5. Check ei1 � ei2. If true then ϕ = ’ � ’. If false then ϕ = ’ >< ’.

The order of precedence among the ϕ relations is: =, (≺,�),∼, ><,<>, where ≺ and �
are at the same precedence level. For the alignment, the first three relations would be of
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interest. However, in order to obtain an unambigous (bijective) mapping only the mapping

elements where ϕ ∈ {=} are included in the alignment. Therefore the method belongs to

the class of exact matching algorithms.

For describing the result of the matching, an alignment measure is introduced. Let l denote

the number of mapping elements in an alignment M . For a given pair of aligned ECG

diagram graphs Γ1 and Γ2, the fitness value µ is calculated as:

µ(Γ1, Γ2) =
l

j+k
2

, (5.11)

where j is the number of element instances in graph Γ1, while k is the number of element

instances in graph Γ2. In this way, the fitness value falls into the [0, 1] interval.

Given two ECG diagram graphs Γ1 = 〈V1, A1, R1〉 and Γ2 = 〈V2, A2, R2〉, their φ ∈ Φ

relation needs to be determined. According to the value of µ, they can be

� semantically comparable, indicated by 0 < µ(Γ1, Γ2) < 1:

Γ1 ./ Γ2 if V1 ∩ V2 6= ∅; (5.12)

� semantically incomparable (or disjunct), indicated by µ(Γ1, Γ2) = 0:

Γ1 CB Γ2 if V1 ∩ V2 = ∅; (5.13)

� equivalent, indicated by µ(Γ1, Γ2) = 1:

Γ1 ≡ Γ2 if V1 = V2 and A1 = A2. (5.14)

5.2.4 Evaluation of the matching algorithm

A well-known and widely-accepted classification of matching approaches is provided by

[Shvaiko & Euzenat, 2004]. The authors specify three dimensions along which matching

algorithms can be classified. According to this, the main characteristics of the matching

procedure developed are as follows.

1. Input dimensions

– The ECG diagram graph matching algorithm works on instance-level ECG

graphs, which are instantiations of the ECG conceptual model (shared ontology)

in which the ontologies are expressed.

– The matching algorithm relies on four information sources: 1) the type at-

tribute of graph constituents (element-level information), 2) the element cat-

egory type lattice (schema-level external source), 3) the element instance type

lattice (schema-level external source), and 4) the relations between the graph

elements (structure-level information).
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2. Process dimensions

– The computation of mapping elements is exact.

– The input is interpreted on the basis of the ECG semantic model.

3. Output dimensions

– The form of the resulting alignment is a one-to-one correspondence between the

element instances.

– The method delivers a graded answer, i.e. an alignment is given with a fitness

value in the [0, 1] range.

– The algorithm examines four φ ∈ Φ relations between two ECG graphs: equi-

valence (≡), semantic comparability (./), disjunction (CB), and restriction (�).

Schema-based matching techniques

Element-level Structure-level

Syntactic External Syntactic External Semantic

Linguistic Internal Relational

Terminological Structural Semantic

Schema-based matching techniques

Granularity /
Input

Interpretation
layer

Basic techniques
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Kind of input
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based

Language-
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Linguistic
resource

Constraint-
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Alignment
reuse

Upper
level
formal
ontology

Graph
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Taxonomy-
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Repository
of

structures

Model-
based

Figure 5.3 Classification of matching algorithms [Shvaiko & Euzenat, 2004]

The classification of matching algorithms in [Shvaiko & Euzenat, 2004] differentiates be-

tween elementary matchers, which include element-level and structure-level matchers, and

combining matchers which combine several approaches (see Figure 5.3). Combination can

be done in two ways: a hybrid matcher integrates multiple matching criteria, while a com-

posite matcher combines the results of independently executed matchers.

The matching algorithm developed can be considered to be a hybrid matcher that applies

the following techniques:

– element-level syntactic string-based matching for the determination of equivalence

of element instances,

– element-level external matching using the element category type lattice for the de-

termination of the ϕ = {><,<>,∼} relations between element instances,
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– element-level external matching using the element instance type lattice for the de-

termination of the generalization relation between element instances,

– structure-level syntactic graph-based matching in examining the � restriction rela-

tion between two ECG diagram graphs.

The matching method developed could be further refined by using an element-level external

repository of existing mapping elements (alignment reuse), and a structure-level external

repository of previously aligned ontologies along with a similarity coefficient.

5.3 The association operation

It is possible to insert ECG diagram graphs incrementally into an initially empty knowledge

base, which is itself another (accumulated) ECG diagram graph and which is built up

by the successive insertion of primary-level ECG diagram graphs. This corresponds to

association in the process of conceptualization, that is incorporating new information

items into the existing knowledge base. In this operation, the ECG diagram graph to

be inserted (Γ2) must be matched to the knowledge base (Γ1) according to the following

algorithm (see Algorithm 5.1).

1. The M mapping (alignment) of the two ECG diagram graphs must be performed

resulting in µ.

2. If µ(Γ1, Γ2) = 0 then Γ1∩Γ2 = ∅. In this case Γ2 is inserted into the knowledge base

in a disjunctive way.

3. If µ(Γ1, Γ2) = 1 then Γ1 ≡ Γ2, that is V1 = V2 and A1 = A2. In this case Γ2 does

not need to be inserted into the knowledge base.

4. If 0 < µ(Γ1, Γ2) < 1 then Γ1 ∩ Γ2 6= ∅. In this case ∀v2i, a2i ∈ Γ2 | v2i, a2i /∈ Γ1 are

inserted into the knowledge base in a conjunctive way, if Γ2 is not a subgraph of Γ1.
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Figure 5.4 Isomorphic ECG diagram graphs
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An ECG diagram graph Γ2 is a subgraph of Γ1 if

� Γ1 contains a subgraph Γ ′1 which is identical to Γ2, i.e. Γ ′1 ≡ Γ2; or

� Γ1 contains a subgraph Γ ′1 which is isomorphic to Γ2, i.e. Γ ′1 ' Γ2, where ’isomorphic’

means that graph Γ2 can be obtained from Γ ′1 by restricting some of the element

instances of Γ ′1 based on the (T ′,≺) element instance type lattice (see the illustration

in Figure 5.4 where Γ1 ≡ Γ ′1).

Input: Γ1, Γ2

Output: Γ1

(M,µ) = Match(Γ2, Γ1)

if µ == 1 then

return

if µ == 0 then

Insert Γ2 into Γ1

if 0 < µ < 1 then

if Γ2 � Γ1 then

return

else

foreach i ∈ Γ2 do

foreach m ∈M do

if i /∈ m then

Insert i into Γ1

Algorithm 5.1 The association algorithm

The association algorithm is based on ECG diagram graph matching. Therefore computing

the cost of the algorithm includes the cost of matching, plus the cost of inserting graph

elements. In matching ECG diagram graphs Γ2 is matched to Γ1. Let j denote the number

of element instances in Γ1, and k denote the number of element instances in Γ2. Matching

is accomplished by comparing each element instance in Γ2 to each element instance of Γ1,

the cost of which is k · j.
If µ == 0, the cost of insertion is k. If 0 < µ < 1, the two graphs have common element

instances. The cost of checking relation Γ2 � Γ1 is k · l ≤ k2 where l is the number of

mapping elements in M . If Γ2 is a subgraph of Γ1, that is Γ2 � Γ1 holds, thus all element

instances of Γ2 are in alignment M , no insertion is executed. If Γ2 is not a subgraph of Γ1,

the cost of inserting the element instances of Γ2 that are not included in Γ1 is less than k.

Summing up the costs of the instructions, the association algorithm has an approximated

cost of k · j + k2 + 2 · k.

5.4 The generalization operation

The association operation does not involve generalization. It covers only the accumula-

tion of incoming information. However, by the increase of the amount of incoming data

the knowledge base would be subtle and computationally intractable without the use of

generalization.
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The present investigation focuses on concept generalization within ECG diagram graphs,

which is defined as the process by which new higher-level ECG concepts are created in

the knowledge base of ECG diagram graphs incorporating the common characteristics of

existing concepts. This process reduces the complexity of the knowledge base of ECG

diagram graphs, since the new higher levels include an ever decreasing number of concepts

and relationships than the underlying layers.

The higher-level concepts to be introduced are pre-defined in a domain-specific concept

lattice, which is the element instance type lattice. Its generation from the given domain is

called abstraction. This concept lattice is built in batch mode using the existing concepts

of the samples, and also the abstract category concepts which are manually added to the

lattice.

The generalization algorithm gives as result the least common generalized graph that can

be obtained from two ECG graphs. The algorithm involves the following steps.

1. The first task is to find frequent knowledge patterns the context of which is similar,

that is ECG diagram subgraphs which differ in only one semantically comparable

concept node.

2. Instead of the differing concepts a new concept is introduced. Otherwise, the oper-

ation cannot be performed. In this way, the similar subgraphs can be united under

the new concept and the differing concepts are connected to the new concept via

specialization relationships.

3. The relationships of the generalized graph should be updated.

Definition 8. Two ECG diagram subgraphs γ1 ∈ Γ1 and γ2 ∈ Γ2 are said to be similar

subgraphs if γ1 ≡ γ2 or γ1 ' γ2, and they are connected to differing but semantically

comparable ECG concept nodes (ei1 >< ei2).

Two similar subgraphs are considered as maximal similar subgraphs if they cannot be ex-

tended further without violating the criterion of similarity.

Thus, the maximal similar subgraphs are searched for in Γ1 and Γ2. For this, the operation

of ECG graph intersection must be introduced. The intersection of two ECG graphs Γ1

and Γ2 is the set of identical or isomorphic connected subgraphs. Formally,

Γ1 ∩ Γ2 = {γ1, γ2, . . . , γk} where ∀γi : γi ∈ Γ1 ∧ γi ∈ Γ2 or (5.15)

γi ∈ Γ1 ∧ γ′i ∈ Γ2 where γi ' γ′i.

Note here, that on the set of all ECG diagram graphs in a given domain, the operation of

graph intersection can be recursively performed, thereby determining the set of all common

subgraphs. In this way a lattice can be built, at the lower levels of which are individual
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(infrequent specialized) ECG diagram graphs, while at the top levels of which are frequent

general subgraphs.

Statement 10. On the union of the set of primary-level ECG diagram graphs (Γ) and the

set of subgraphs resulting from intersection (γ) the ⊆ set relation effects a lattice structure.

Input: Γ1, Γ2

Output: Γ1

(M,µ) = Match(Γ2, Γ1)

if µ == 1 then

return

if µ == 0 then

Insert Γ2 into Γ1

if 0 < µ < 1 then

if Γ2 � Γ1 then

return

else

// Begin generalization

Search for maximal similar subgraphs in Γ1, Γ2

foreach (γ∗1 , γ
∗
2 ) do

if ei1 >< ei2 then

if lcg(ei1, ei2) 6= UNIV then

if lcg(ei1, ei2) /∈ Γ1 then

Insert lcg(ei1, ei2) into Γ1

if lcg(ei1, ei2) 6= ei1 then

Connect ei1 to lcg(ei1, ei2) by FMI

Update relations of ei1 in Γ1

if ei2 /∈ Γ1 then

Insert ei2 into Γ1

if lcg(ei1, ei2) 6= ei2 then

Connect ei2 to lcg(ei1, ei2) by FMI

Update relations of ei2 in Γ1

// End generalization

foreach i ∈ Γ2 do

foreach m ∈M do

if i /∈ m then

Insert i into Γ1

Algorithm 5.2 Association with generalization

The extension of the ECG graph intersection operation results in the pairs of maximal

similar subgraphs of Γ1 and Γ2 (see Definition 8). Formally,

Γ1 ∩∗ Γ2 = {(γ∗11, γ
∗
12), (γ∗21, γ

∗
22), . . . , (γ∗k1, γ

∗
k2)} where (5.16)

∀(γ∗i1, γ∗i2) : γ∗i1 ∪ γ∗i2 = γi ∪ {ei1, ei2} |

γ∗i1, ei1 ∈ Γ1 ,γ∗i2, ei2 ∈ Γ2 and γi ∈ Γ1 ∩ Γ2.

For the differing concepts ei1 >< ei2 should be checked, where ei1 ∈ Γ1 and ei2 ∈ Γ2. If se-

mantic comparability holds between the instances – that is lcg([typei1 ], [typei2 ]) 6= UNIV
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on the basis of the element category type lattice – a new concept needs to be introduced

from the element instance type lattice determined as lcg(ei1, ei2) (if this is not the UNIV

top element). It is possible, that lcg(ei1, ei2) results in one of its arguments. In this case

actually no insertion occurs. Finally, the differing concepts are connected to the new con-

cept via specialization relationships and the other relationships originally in connection

with the differing concepts should also be updated.

In practice, the problem of finding similar subgraphs can be solved by parallel depth-first

searches in Γ1 and Γ2. Optimally, the generalization operation is implemented as part of

the process of association. More precisely, it should be accomplished within the instruc-

tion block where 0 < µ < 1 and Γ2 � Γ1 is false, that is the two graphs have common

element instances but Γ2 is not a subgraph of Γ1. The modified algorithm can be found

in Algorithm 5.2.

Consequently, the cost of the conceptualization process results from the sum of the cost

of the association algorithm (k · j + k2 + 2 · k) and that of the generalization algorithm

which involves similar subgraph search and the search for the least common generalized

element in the element instance type lattice. Let k denote the number of element instances

in Γ2, and j denote the number of element instances in Γ1; where Γ2 is a primary-level

ECG diagram graph, while Γ1 is the accumulated ECG diagram graph. Thus, in the long

run j >> k, and m denotes the size of the element instance type lattice. In the case of

sequential search the cost of similar subgraph search is k ·j and the cost of determining the

least common generalized element of the two differing elements is 2 ·m. When using an

indexed tree for the searches the costs can be reduced to k · log j and 2 · logm, respectively.

However, in this case the cost of generating the indexed tree should also be taken into

account.

Considering a smaller domain and sequential searches, the cost of the conceptualization

process adds up to 2 · (k · j) + k2 + 2 · k+ 2 ·m. Initially, when the size of the accumulated

ECG diagram graph is null the first element of the summation can be neglected and the

cost of the method is mostly characterized by the size of the element instance type lattice.

Later on, as the size of Γ1 increases, the effect of the first element will be the most signi-

ficant on the cost of the whole process of conceptualization.
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Figure 5.5 The process of generalization
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At the end of the generalization process (see Figure 5.5) stands the generalized knowledge

an agent can obtain from the samples observed. This can be formulated as recursively

determining the least common generalization of the previous abstract-level ECG graph

and a primary-level ECG graph, that is

Γai = lcg(Γai−1 , Γpi+1). (5.17)

Similarly to the formulation of the least common generalization of two ECG graphs, it is

possible to give the greatest common specialization of two ECG graphs. This latter can

be defined as the maximal common restriction of the two graphs, that is the union of the

maximal similar subgraphs of the two graphs. Formally,

gcs(Γ1, Γ2) =
⋃

({max(γ∗i1, γ
∗
i2)}). (5.18)

Though it is possible that the greatest common specialization of two ECG graphs results in

an empty graph, the least common generalization and the greatest common specialization

of two ECG graphs always exist and can be computed. Therefore, the definition of the

≺ relation on element instances can be extended to a partial relation � on ECG diagram

graphs and the term ’restriction of’ can be used to describe this relation. Accordingly, an

ECG diagram graph Γ2 is a restriction of ECG diagram graph Γ1, that is Γ2 � Γ1 if graph

Γ2 is more ’specialized’ than graph Γ1.

Let Γ denote the set of primary-level ECG diagram graphs (representing environment

snapshots) that are matched to and incorporated in the knowledge base of the agent, and

Γ(A) denote the set of accumulated ECG diagram graphs resulting from the conceptual-

ization (association and generalization) steps executed.

Statement 11. The � relation effects a lattice structure on the union of Γ and Γ(A).

The top element of the lattice (Γ ∪ Γ(A),�) symbolizes the accumulated knowledge of

the agent at the end of the conceptualization process. The bottom element is NIL, the

infinum element.

5.5 Summary of the results

This chapter has discussed the process of conceptualization by means of ECG diagram

graphs, that is how the knowledge base of the grammar inducing agent investigated is

built up from primary-level ECG graphs. This process involves not only knowledge accu-

mulation and incorporation (association), but also abstraction and generalization, where

the operation of association can always be accomplished, but generalization does not ne-

cessarily occur in each step. The new scientific results can be summarized as follows.
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Thesis 4.

A method is developed for the execution of the conceptualization process within the learning

agent examined, which involves the operations of association and generalization. Accord-

ing to the association algorithm, primary-level ECG diagram graphs are matched to and

incorporated in an initially empty knowledge base, which is itself another (accumulated)

ECG diagram graph. The matching of ECG diagram graphs is based on a hybrid context-

dependent ECG diagram graph matching algorithm, and is traced back to the matching of

element instances, for the examination of which an element category type lattice is defined.

The generalization algorithm is implemented as part of the association process and proceeds

by introducing new (not observed) higher-level concepts into the knowledge base. First, the

algorithm searches for maximal similar subgraphs which differ in only one ECG diagram

graph node. For their exploration the intersection operation of two ECG diagram graphs

and its extension are defined. If the differing nodes are semantically comparable on the

basis of the element category type lattice, a new concept is inserted from the element in-

stance type lattice determined as the least common generalization of the differing concepts.

Finally, the relationships are updated in the knowledge base.

< Statements 8, 9 >

Consequences

1. Recursively performing the operation of graph intersection on the set of ECG dia-

gram graphs and on the resulting sets of common subgraphs, a lattice can be built.

The lower-level nodes of the lattice include individual (infrequent specialized) ECG

diagram graphs, while at the top levels of the lattice frequent general subgraphs are

located. The relation between the nodes of this lattice is ⊆.

< Statement 10 >

2. The two operations of association and generalization together accomplish the process

of conceptualization. At the end of the process, the accumulated knowledge of the

agent can be obtained as the top element of the lattice constructed from the set of

primary-level ECG diagram graphs and the set of accumulated ECG diagram graphs

resulting from the conceptualization (association and generalization) steps executed,

the relation between the nodes of which is �.

< Statement 11 >
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Chapter 6

Applications of the Theoretical Results

The fourth task of the dissertation is to build a test system within which the applicability

of the theoretical results can be verified. Accordingly, this chapter introduces the semantic

annotation framework [12] by the application of which the set of training samples (symbolic

assertions semantically annotated with ECG ontologies) has been generated automatically

for modeling the process of conceptualization.

6.1 Semantic annotation framework

The process of building a knowledge-based system is composed of three stages. First,

the domain ontology (terminological database) should be created which then should be

extended with the assertions or statements on the instances of the domain. Finally, to the

knowledge given in this way a problem solving method should be assigned that defines the

control structure (operational model) of the system [Futó, 1999].
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Figure 6.1 Operational model of the the semantic annotation framework

For the present investigations, the terminological database has been created in OWL DL

(ECGmodel.owl on the DVD attached) on the basis of the ECG model definition using

Protégé, which is a free, open source ontology editor and knowledge-base framework
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developed at Stanford University (http://protege.stanford.edu/ ). For generating the as-

sertions on domain instances, a semantic annotation framework has been implemented in

NetBeans IDE 6.9 integrated development environment using Java 1.6.0 20 version

Java HotSpot(TM) 64-Bit Server VM 16.3-b01 [12]. The operational model of the

system is shown in Figure 6.1.

The system represents an agent for semantic annotation. Its environment is the graphical

microworld created by a graphical editor. The environment snapshots (static observations)

are processed by the sensor of the agent, which is the object and relation detection modul.

Its task is to recognize the objects of the environment and their relations, and to map

them to the internal semantic representation of the agent using the terminological database

(ECG model definition). Next, the ontology builder automatically generates the instance-

level ontologies (assertions on the environment instances describing the semantics of the

observations) in OWL DL textual format. The assertions are also expressed in ECG-HOPL

statements and in symbolic sentences. Finally, the ECG diagram graph builder creates

the graphical diagrams for the OWL descriptions.

6.1.1 Graphical editor

Figure 6.2 User interface of the graphical editor modul

The environment of the agent is the graphical microworld created by the graphical editor.

The objects of the environment include two-dimensional instances which can be charac-

terized by their shape (circle, square and triangle), their color (white, black, red, blue,
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green, yellow) and their size (large, medium, small). The relationship of two objects can

be of geometrical or proportional type. The geometrical relationship of two objects can

be inclusion, intersection or non-intersection. The non-intersection relationship can be

further divided into four (semantically three) cases: above, below and next to. Since the

relations of the two objects are determined relatively to one another, the inverse of the

relationships is also defined which can be given by changing the roles of the objects within

the relation. Thus, all together six semantically different geometrical relationships can be

identified. The graphical user interface of the graphical editor modul (Design tab in the

semantic annotation framework) is displayed in Figure 6.2.

Environment snapshots created manually are stored in a tmp directory. However, by click-

ing on the Put two objs button the graphical editor automatically generates all possible,

semantically valid and unique snapshots in png format. The combinatorically estimated

upper value for the number of snapshots in the given microworld is 11664. However, when

two objects with the same shape and size are in inclusion relationship they are actually

in coverage, so these cases (648) are semantically uninterpretable and they should be

subtracted from the estimated value resulting in 11016, which gives the number of valid

cases. Graphical environment snapshots, which are also stored in txt format for the sake

of reloadability, are stored in an OWL directory groupped by the shape, size and color of

the objects observed.

6.1.2 Object and relation detection modul

Environment snapshots are processed by the object and relation detection modul, which

represents the sensor of the agent. Its task is to recognize the objects of the environment

together with their properties and their relationships, and to map the observations to the

internal semantic representation of the agent using the ECG model definition (see Table

6.1). The capabilities of the agent are predefined. Accordingly, the set of recognizable

environment elements is the following.

Table 6.1 Mapping rules of recognizable environment elements

Element Internal Constraints

recognized identifier

assertion on FMPR Within a fragment only one kernel predicate can be defined.

two objects

object FICN Objects are linked to the kernel predicate via FSR relationships

in Subject or Object role.

shape FMCR Shapes are connected to a FICN object via the HasShape predicate

in FMR Object role, while the FICN object plays the Subject role.

color FMCR Colors are connected to a FICN object via the HasColor predicate

in FMR Object role, while the FICN object plays the Subject role.

size FMCR Sizes are connected to a FICN object via the HasSize predicate

in FMR Object role, while the FICN object plays the Subject role.
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� Shapes recognized: circle, square, triangle.

� Colors recognized: white, black, red, blue, green, yellow.

� Sizes recognized: large, medium, small.

� Relationships between two objects recognized:

– inclusion and its inverse relation;

– intersection;

– non-intersection: above/below, next to;

– bigger/smaller.

The identification of the geometrical relationships is based on the position of the geomet-

rical centers of the objects. The algorithm proceeds by first examining whether the object

displayed first is in the object displayed second. If this is the case, the inverse inclusion

relation also holds by changing the roles of the objects. If the relation between the two

objects is not inclusion, the possibility of intersection should be examined. If the result is

negative, a non-intersection relation must hold. For deciding the type of a non-intersection

relation a coordinate system turned by 45° should be placed to the center of the object

displayed first. If the center of the object displayed second is located in the upper/lower

quarter, then the first object is below/above the second. Its inverse is that the second

object is above/below the first (determined by changing the roles of the objects). If the

center of the second object is located in the left or right quarter, the relationship between

the objects is next to. Finally, the proportional relationship is examined between the ob-

jects on the basis of their size. If the first object is bigger/smaller than the second, then

the second is evidently smaller/bigger than the first. The result of this analysis is stored

for each snapshot in textual format (see an example in Figure 6.3).

Obj#0 isIn        Obj#1: false
Obj#0 isInclude   Obj#1: false
Obj#0 isIntersect Obj#1: false
Obj#0 isNextTo    Obj#1: false
Obj#0 isAbove     Obj#1: false
Obj#0 isBelow     Obj#1: true
Obj#0 isBigger    Obj#1: true
Obj#1 isBigger    Obj#0: false

Obj#1 isIn        Obj#0: false
Obj#1 isInclude   Obj#0: false
Obj#1 isIntersect Obj#0: false
Obj#1 isNextTo    Obj#0: false
Obj#1 isAbove     Obj#0: true
Obj#1 isBelow     Obj#0: false
Obj#0 isSmaller   Obj#1: false
Obj#1 isSmaller   Obj#0: true

Obj#0

Obj#1

Figure 6.3 Relation test of the given snapshot

6.1.3 Ontology builder

The task of this modul is to automatically generate the instance-level ontologies (i.e. the

semantic descriptions of the environment snapshots detected) in OWL DL textual format

(see Figure 6.4) and to assign ECG-HOPL statements and symbolic sentences to the

ontologies (which are also stored in the OWL files).
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Figure 6.4 Display of an instance-level OWL ontology

The OWL tab of the semantic annotation framework shows the list of instance-level OWL

ontologies generated. By choosing one from the list and clicking on the Show file but-

ton, it can be displayed in the main panel. For each environment snapshot and for each

kernel predicate detected in the snapshot 16 OWL files are generated and stored in the

same directory as the graphical snapshot itself. In the simplest case, the OWL ontology

includes only the two objects (without their properties) and their relationship. The other

files extend this information with the size and/or color of the objects. The program modul

creates all possible variations. Among the 11016 graphical environment snapshots 3240

display objects with the same size, in the case of which the proportional relationship can

not be interpreted. Therefore 51840 OWL ontologies are generated for these snapshots.

For the other 7776 environment snapshots including dissimilar sized objects 248832 OWL

ontologies are created. Thus, the number of OWL files comprising the training set adds

up to circa 300 thousand.

The steps of constructing instance-level ontologies are summarized in Appendix B. In man-

ual microworld creation mode symbolic sentences can be added manually to the graphical

snapshots, the language of which is indifferent. In automatic mode, however, the ontology

builder assigns an English sentence to each snapshot automatically. Figure 6.5 shows an

example for determining the ECG-HOPL statement of a snapshot.
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<j.0:PLstatement rdf:ID="PLstatement_30">
  <j.0:Caption xml:lang="en">
   FMPR_5 : Above(
     FSR_5 : Subject :: FICN_101 : _101,
     FSR_05 : Object :: FICN_202 : _202 |
       FMPR_120 : HasShape(
         FSR_120 : Subject ::  FICN_101 : _101, 
         FMR_0120 : Object :: FMCR_321 : circle   ), 
       FMPR_140 : HasSize(
         FSR_140 : Subject :: FICN_101 : _101, 
         FMR_0140 : Object :: FMCR_341 : medium), 
       FMPR_160 : HasColor(
         FSR_160 : Subject :: FICN_101 : _101, 
         FMR_0160 : Object :: FMCR_362 : red   ), 
       FMPR_220 : HasShape(
         FSR_220 : Subject :: FICN_202 : _202, 
         FMR_0220 : Object :: FMCR_422 : square   ), 
       FMPR_240 : HasSize(
         FSR_240 : Subject :: FICN_202 : _202, 
         FMR_0240 : Object :: FMCR_440 : large ), 
       FMPR_260 : HasColor(
         FSR_260 : Subject :: FICN_202 : _202, 
         FMR_0260 : Object :: FMCR_463 : blue  ) )
  </j.0:Caption>
</j.0:PLStatement>

Obj#0

Obj#1

Figure 6.5 ECG-HOPL statement of the given snapshot

Figure 6.6 Display of an ECG diagram graph
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6.1.4 ECG diagram graph builder

The task of this modul is the visualization of the textual ontologies. ECG diagram graphs

are created automatically using Algorithm 3.1 on page 45 from which one can be chosen

to be displayed in the ECG tab of the semantic annotation framework by clicking on the

Draw ECG button (see Figure 6.6).

6.2 Modeling the process of conceptualization

The base set for modeling the process of conceptualization includes approximately 300

thousand ECG diagram graphs generated automatically by the semantic annotation frame-

work. As described in Chapter 5, the process of conceptualization involves the processes

of association, abstraction and generalization.

6.2.1 Association

Association is defined as the process by which ECG diagram graphs are incrementally

matched to and inserted in the knowledge base of the agent investigated, according to

Algorithm 5.1 on page 82. In the Generalization tab of the system implemented the ECG

diagram graphs can be chosen and inserted into the graph set by clicking on the Insert

ECG button. The main panel displays the current state of the knowledge base. On this

panel, by moving the cursor to any node of the accumulated graph the status bar shows

the description of the concept included in that node. The detailed description of the rela-

tionships are given in the message box under the graph (see Figure 6.7).

Figure 6.7 Illustration of association
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6.2.2 Abstraction

Abstraction is the process by which higher-level concepts are generated from a given do-

main. These concepts can be structured in an element instance type concept lattice, which

is built in batch mode and to which abstract category concepts can be added manually.

A demonstrative segment of the lattice generated on the basis of the training data set is

shown in Figure 6.8.

UNIV

...

...

Level of
abstract
concepts

Level of
primary class

concepts

Level of
instance 
concepts

2D shape 3D shape

polygon

red small blue white big white big

small 
red

small blue big white big white

FICN_1 FICN_2 FICN_3 FICN_4 FICN_5 FICN_6

NIL

...

Figure 6.8 A segment of the element instance type lattice

Figure 6.9 Illustration of generalization
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6.2.3 Generalization

Generalization is the process by which new higher-level ECG concepts are created in the

knowledge base of ECG diagram graphs incorporating the common significant (frequently

occuring) characteristics of the existing concepts. The higher-level concepts to be intro-

duced are pre-defined in the element instance type lattice.

Generalization is implemented as part of the association algorithm and can be accessed

through the Generalization tab of the system implemented. The algorithm searches for

maximal similar subgraphs in the two graphs to be joined, which differ in only one se-

mantically comparable concept node. Instead of the differing concepts a new concept is

introduced determined as the least common generalization of the differing concepts in the

lattice (see Figure 6.8), and displayed in the message box under the accumulated graph.

In other words, the generalization algorithm gives as result the least common generalized

graph that can be obtained from two ECG graphs. See the illustration in Figure 6.9.

A demonstrative example for the process of conceptualization (involving association and

generalization) can be found in Appendix E.
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Chapter 7

Summary

In the dissertation the semantic model which can be applicable in the grammar induction

system in Figure 1.1 on page 3 has been investigated. The semantic model of a learning

agent has two major roles: 1) it is the internal representation of the signals coming from

the agent’s environment, and 2) it is used to build up the knowledge base of the agent.

Accordingly, the scope of the present research has covered the following tasks.

1. First, the semantic model for knowledge representation in the grammar induction

system investigated had to be developed and analyzed (see Chapter 3).

2. Second, the grammar formalism that is able to represent symbolic language sentences

and their semantic descriptions in a common framework had to be defined, in support

of grammar induction (see Chapter 4).

3. Third, the build-up of the knowledge base of the grammar learning agent examined

had to be modeled through the process of conceptualization (see Chapter 5).

4. Finally, a test system had to be implemented for verifying the applicability of the

theoretical results (see Chapter 6).

7.1 Contributions

The new scientific results achieved during the completion of the project are summarized

as follows.

Thesis 1: [8], [9], [10]

A novel semantic model is developed, called ECG, which has a logic-based ECG-HOPL

and a semantically equivalent graphical ECG diagram representation. The model satisfies

the requirements of the knowledge representation format in the investigated grammar

induction system, and can be used as an ontology modeling language because its main

building blocks are concepts and their relationships. It is predicate-centered and it defines

two levels and distinct elements for describing the different phases of conceptualization.

It provides high levels of functionality, flexibility and extendibility. It is computationally

tractable while highly expressive, that is it covers a wide range of linguistic phenomena.
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Consequences of Thesis 1:

1. Since ECG can be considered as an ontology modeling language, ECG diagram can

be used for visual ontology representation. The generation of ECG diagram graphs

can be accomplished by an O(n2) algorithm, where n is the number of OWL elements

to be displayed.

2. ECG can also be applied as a sentence-level semantic annotation language, because

every ECG-HOPL statement can be semantically unambiguously rendered into an

NL sentence examined and every NL sentence under examination can be approxi-

mated by an ECG-HOPL statement.

3. ECG-HOPL can be defined with CFG, which proves that the syntax of ECG is simple

enough so that a computationally effective learning algorithm can be constructed

for inducing a set of grammar rules from ECG, and consequently from the sentences

annotated by ECG.

Thesis 2: [7]

ECG fragment diagrams are acyclic graphs, therefore they can be converted to a tree

structure the root of which is the kernel predicate. The mapping is proved to be lossless

and is accomplished by an O(n2) algorithm, where n is the number of ECG diagram

elements. The new ECG-TAG grammar formalism consists of edge-labeled lexicalized tree

structures, the nodes of which correspond to ECG concepts, while the edges represent

ECG relationships. The formalism is TAG-based, because it uses the same tree set (with

different interpretation) and the same operations for tree construction as the original TAG

formalism. At the same time, it is also dependency-based in the sense that edge labels

represent semantic dependency relations.

Thesis 3:

The next task is to represent the semantic models and their symbolic language descrip-

tions in a common framework. The algorithm that performs the assignment of symbolic

sentence units to ECG concepts results in a new grammar formalism, called S-ECG-TAG,

which combines the levels of semantics and syntax. The formalism extends the ECG-TAG

formalism with a symbolic level, where the nodes include word sequences, while the edges

are labeled by precedence relations representing the order of word sequences in the cor-

responding symbolic sentence. Hence, the symbolic level encodes word order locally and

discontinuous constructions are represented by sibling nodes.

Consequences of Thesis 3:

1. The S-ECG-TAG formalism can be applied as a common framework for representing

ECG diagrams and the corresponding symbolic sentences.

2. The S-ECG-TAG formalism can be applied as a formal grammar to be learnt in

the grammar induction process because word sequences stored in the symbolic-level
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nodes of the S-ECG-TAG derivation trees compose the vocabulary of a given lan-

guage, while the labels of their edges represent a valid ordering of the word sequences.

Thesis 4: [13]

A method is developed for the execution of the conceptualization process within the learn-

ing agent examined, which involves the operations of association and generalization. Ac-

cording to the association algorithm, primary-level ECG diagram graphs are matched to

and incorporated in an initially empty knowledge base, which is itself another (accumu-

lated) ECG diagram graph. The matching of ECG diagram graphs is based on a hybrid

context-dependent ECG diagram graph matching algorithm, and is traced back to the

matching of element instances, for the examination of which an element category type

lattice is defined.

The generalization algorithm is implemented as part of the association process and pro-

ceeds by introducing new (not observed) higher-level concepts into the knowledge base.

First, the algorithm searches for maximal similar subgraphs which differ in only one ECG

diagram graph node. For their exploration the intersection operation of two ECG diagram

graphs and its extension are defined. If the differing nodes are semantically comparable

on the basis of the element category type lattice, a new concept is inserted from the ele-

ment instance type lattice determined as the least common generalization of the differing

concepts. Finally, the relationships are updated in the knowledge base.

Consequences of Thesis 4:

1. The two operations of association and generalization together accomplish the process

of conceptualization. At the end of the process, the generalized knowledge of the

agent can be obtained as the top element of the lattice constructed from the set of

primary-level ECG diagram graphs and the set of accumulated ECG diagram graphs

resulting from the association and generalization steps executed.

2. Recursively performing the operation of graph intersection on the set of ECG dia-

gram graphs and on the resulting sets of common subgraphs, a lattice can be built.

The lower-level nodes of the lattice include individual (infrequent specialized) ECG

diagram graphs, while at the top levels of the lattice frequent general subgraphs are

located.

7.2 Directions of future investigations

As declared in Chapter 5, not only the least common generalization but also the greatest

common specialization of two ECG graphs can be computed. Therefore the first task to

be accomplished in the future is the incorporation of this computation into the system

developed.

As a second task, training samples for a greater and more appropriate domain should be

generated for modeling the process of generalization on all three levels.
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After implementing the grammar learning algorithms of Chapter 4, the grammar induction

system investigated can be developed. At this stage, there are several possible directions

of research depending on the choice of symbolic language and formal grammar.

If the grammar induction system is extended to be cooperate with a sentence generation

agent (which is able to assign symbolic sentences to ontology models), the system modeled

in Figure 7.1 will be applicable as a natural language interface (NLI) for the ECG model

and other semantic models after conversion, or even for image recognition systems.
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Figure 7.1 System plan for grammar induction extended with sentence generation

The extended system can also be used for supporting machine translation. Based on the

fact that semantically equivalent assertions have identical ontology representations inde-

pendent of the syntactic level of language, assertions given in two different languages can

be compared and their similarity can be determined according to their semantic annota-

tions. After that, applying the grammar of the target language (which should be learned

previously) the system can generate the semantically equivalent target language sentences

for the assertions in the source language.
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Appendix A

DL Definition of the ECG Model

Main building blocks of the model

� T ≡ Concept t Relationship t Container t Sentence t PLstatement

� Concept ≡ T u ¬ Relationship u ¬ Container u ¬ Sentence u ¬ PLstatement

� Relationship ≡ T u ¬ Concept u ¬ Container u ¬ Sentence u ¬ PLstatement
u =1 hasRange.Concept

� Container ≡ T u ¬ Concept u ¬ Relationship u ¬ Sentence u ¬ PLstatement

� Sentence ≡ T u ¬ Concept u ¬ Relationship u ¬ Container u ¬ PLstatement

� PLstatement ≡ T u ¬ Concept u ¬ Relationship u ¬ Container u ¬ Sentence

Containers

� History v Container

� Snapshot v History u ∃hasCategoryConcept.CategoryConcept
u ∃hasPredicateConcept.PredicateConcept

� Fragment ≡ Snapshot u =1 hasKernelPredicate.PredicateConcept u
=1 hasDescription.Sentence u =1 hasPLDescription.PLstatement

Concepts

Category concepts

� CategoryConcept ≡ Concept u ¬ PredicateConcept

� PrimaryCategoryConcept ≡ CategoryConcept u ¬ AbstractCategoryConcept
u =1 Primary.{true}

� AbstractCategoryConcept ≡ CategoryConcept u ¬ PrimaryCategoryConcept
u =1 Primary.{false}

� ClassPrimaryCategoryConcept ≡ PrimaryCategoryConcept
u ¬ InstancePrimaryCategoryConcept u =1 Multiple.{true}

� InstancePrimaryCategoryConcept ≡ PrimaryCategoryConcept
u ¬ ClassPrimaryCategoryConcept u =1 Multiple.{false}

� FICN ≡ InstancePrimaryCategoryConcept u =1 Named.{no}

� FICT ≡ InstancePrimaryCategoryConcept u =1 Named.{temporary}
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� FICR ≡ InstancePrimaryCategoryConcept u =1 Named.{permanent}

� FMCR ≡ ClassPrimaryCategoryConcept u =1 Named.{permanent}

� AMCR ≡ AbstractCategoryConcept u =1 Multiple.{true}
u =1 Named.{permanent}

Predicate concepts

� PredicateConcept ≡ Concept u ¬ CategoryConcept
u =1 Multiple.{true} u =1 Named.{permanent}

� PrimaryPredicateConcept ≡ PredicateConcept u ¬ AbstractPredicateConcept
u =1 Primary.{true}

� AbstractPredicateConcept ≡ PredicateConcept u ¬ PrimaryPredicateConcept
u =1 Primary.{false}

� FMPR ≡ PrimaryPredicateConcept

� AMPR ≡ AbstractPredicateConcept

Relationships

� IsaRelationship ≡ Relationship u =1 Typed.{isa} u =1 hasDomain.Concept

� RoleRelationship ≡ Relationship u =1 Typed.{role}
u =1 hasDomain.PredicateConcept

� FMI ≡ IsaRelationship u =1 Multiple.{true} u =1 Primary.{true}

� FSR ≡ RoleRelationship u =1 Multiple.{false} u =1 Primary.{true}

� FMR ≡ RoleRelationship u =1 Multiple.{true} u =1 Primary.{true}

� AMR ≡ RoleRelationship u =1 Multiple.{true} u =1 Primary.{false}

Object property definitions

� hasDescription : Fragment → Sentence

� hasPLDescription : Fragment → PLstatement

� hasDomain : Relationship → Concept

� hasRange : Relationship → Concept

� hasCategoryConcept : Fragment → CategoryConcept

� hasPredicateConcept : Fragment → PredicateConcept

� hasKernelPredicate v hasPredicateConcept

� isKernelOf ≡ hasKernelPredicate−
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Datatype property definitions

� Caption : Concept t Relationship t Sentence t PLstatement → {string}

� Primary : Concept t Relationship → {boolean}

� Multiple : Concept t Relationship → {boolean}

� Named : Concept → {string:<no,temporary,permanent>}

� Typed : Relationship → {string:<isa,role>}

103



Appendix B

Instance-Level ECG Ontology Construction

Header of the OWL file

<?xml version=”1.0”?>

<rdf:RDF

xmlns=”http://www.iit.uni-miskolc.hu/vargae/filename.owl#”

xmlns:j.0=”http://www.iit.uni-miskolc.hu/vargae/ECGmodel.owl#”

xmlns:protege=”http://protege.stanford.edu/plugins/owl/protege#”

xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema#”

xmlns:rdfs=”http://www.w3.org/2000/01/rdf-schema#”

xmlns:owl=”http://www.w3.org/2002/07/owl#”

xml:base=”http://www.iit.uni-miskolc.hu/vargae/filename.owl”>

<owl:Ontology rdf:about=”ECG model”>

<owl:imports

rdf:resource=”http://www.iit.uni-miskolc.hu/vargae/ECGmodel.owl”/>

</owl:Ontology>

Fragment description

<j.0:Fragment rdf:ID=”Fragment n”/>

<j.0:Sentence rdf:ID=”Sentence n”>

<j.0:Caption xml:lang=”hu”>. . .</j.0:Caption>

</j.0:Sentence>

<j.0:PLstatement rdf:ID=”PLstatement n”>

<j.0:Caption xml:lang=”hu”>. . .</j.0:Caption>

</j.0:PLstatement>

Specifying the kernel predicate

<j.0:FMPR rdf:ID=”FMPR n”>

<j.0:isKernelOf rdf:resource=”#Fragment n”/>

<j.0:Caption xml:lang=”en”>. . .</j.0:Caption>

</j.0:FMPR>

Specifying a non-kernel predicate

<j.0:FMPR rdf:ID=”FMPR n”>

<j.0:Caption xml:lang=”en”>. . .</j.0:Caption>

</j.0:FMPR>
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FICN category concept definition

<j.0:FICN rdf:ID=”FICN n”>
<j.0:Caption xml:lang=”en”> n</j.0:Caption>

</j.0:FICN>

FICT category concept definition

<j.0:FICT rdf:ID=”FICT n”>
<j.0:Caption xml:lang=”en”>#n</j.0:Caption>

</j.0:FICT>

FICR category concept definition

<j.0:FICR rdf:ID=”FICR n”>
<j.0:Caption xml:lang=”en”>. . .</j.0:Caption>

</j.0:FICR>

FMCR category concept definition

<j.0:FMCR rdf:ID=”FMCR n”>
<j.0:Caption xml:lang=”en”>. . .</j.0:Caption>

</j.0:FMCR>

Specifying an Isa relation

<j.0:FMI rdf:ID=”FMI n”>
<j.0:hasDomain rdf:resource=”#. . . ”/>
<j.0:hasRange rdf:resource=”#. . . ”/>

</j.0:FMI>

Specifying a semantic role relation

<j.0:FMR rdf:ID=”FMR n”>
<j.0:hasDomain rdf:resource=”#. . . ”/>
<j.0:hasRange rdf:resource=”#. . . ”/>
<j.0:Caption xml:lang=”en”>. . .</j.0:Caption>

</j.0:FMR>

Building a fragment

<j.0:Fragment rdf:resource=”#Fragment n”>
<j.0:hasDescription rdf:resource=”#Sentence n”/>
<j.0:hasPLDescription rdf:resource=”#PLstatement n”/>
<j.0:hasKernelPredicate rdf:resource=”#FMPR n”/>
<j.0:hasPredicateConcept rdf:resource=”#FMPR n”/>
. . .
<j.0:hasCategoryConcept rdf:resource=”#. . . ”/>
. . .

</j.0:Fragment>

Closing the file

</rdf:RDF>
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Appendix C

Examples for ECG-TAG Derivation Tree Construction

Figure C.2 illustrates the steps of constructing the ECG-TAG derivation tree for the ex-
ample in Figure C.1 describing the observation ”A black circle is in a white triangle”.
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FMPR_2:
HasColor
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FMCR_4:
white

FMCR_4:
white
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Object

Object

isaisa

Figure C.1 ECG diagram for ”A black circle is in a white triangle”
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Figure C.2 Construction of the ECG-TAG derivation tree for Fig. C.1
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A more complex example can be seen in Figure C.3 representing the ECG fragment where
”A black circle is in a big white triangle”. Here, two auxiliary trees with the same root
node are created during the mapping process. The steps of the mapping and the resulting
ECG-TAG derivation tree are shown in Figure C.4.
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Figure C.3 ECG diagram for ”A black circle is in a big white triangle”
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Figure C.4 Construction of the ECG-TAG derivation tree for Fig. C.3
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Appendix D

Example for S-ECG-TAG Derivation Tree Construction

Figure D.1 shows an example of how symbolic terms are assigned to ECG concepts.

Step 1 – Base ECG-TAG derivation tree
S

FMPR_1

ObjectPred.

FICN_2FICN_1

Subj.

FMCR_2FMCR_1
isa isa

Base sentence: A circle is in a triangle.

Step 3 – Reference ECG-TAG DT set
S

FMPR_2

ObjectPred.

FICN_2FICN_1

Subj.

FMCR_2FMCR_1
isa isa

Sentence 1: A circle includes  a triangle.

1)

S

FMPR_1

ObjectPred.

FICN_2FICN_1

Subj.

FMCR_2FMCR_2
isa isa

Sentence 2: A triangle is in a triangle.

2)

S

FMPR_1

ObjectPred.

FICN_2FICN_1

Subj.

FMCR_1FMCR_1
isa isa

Sentence 2: A circle is in a circle.

3)

Step 4 – Comparing base to reference trees
1) diff_concept = FMPR_1
     diff_sentenceunits = {is in}
     edgenumber = 3

2) diff_concept = FMCR_1
     diff_sentenceunits = {circle}
     edgenumber = 2

3) diff_concept = FMCR_2
     diff_sentenceunits = {triangle}
     edgenumber = 6

S

FMPR_1

ObjectPred.

FICN_2FICN_1

Subj.

FMCR_2FMCR_1
isa isa

S-ECG-TAG derivation tree

is in circle triangle
3 2 6

S

FMPR_1

ObjectPred.

FICN_2FICN_1

Subj.

FMCR_2FMCR_1
isa isa

S-ECG-TAG derivation tree

is in the circle the triangle
3 1 5

Step 5 – Assigning articles

Figure D.1 Assigning symbolic terms to ECG concepts
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Appendix E

Example for the Process of Conceptualization

Considering the example illustrated in Figures E.1 – E.5, let Γ1 denote the knowledge
base of the agent already containing one observation and Γ2 denote the observation to be
inserted into the knowledge base. Two similar subgraphs are found indicated by identical
colors. The new concepts inserted from the element instance type lattice (see Figure 6.8 on
page 95) are indicated by red-bordered ellipses. In the next stage Γ3 denotes the current
state of the knowledge base and Γ4 is the new observation to be inserted. Again, two
similar subgraphs are identified and two new concepts are inserted. As a result, after
processing three observations Γ5 represents the actual state of the knowledge base.

InIn

FICN_2FICN_2

HasColorHasColor

Subject Object
Γ

1

HasSizeHasSizeHasShapeHasShape

triangletriangle whitewhite bigbig

FICN_1FICN_1

HasSizeHasSize HasColorHasColorHasShapeHasShape

triangletriangle smallsmall redred

Figure E.1 Initial state of the knowledge base containing one observation
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Subject Object
Γ

2

HasSizeHasSizeHasShapeHasShape

triangletriangle whitewhite bigbig

FICN_3FICN_3

HasSizeHasSize HasColorHasColorHasShapeHasShape

triangletriangle smallsmall blueblue

Figure E.2 First new observation to be inserted into the knowledge base
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InIn
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S O
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3
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big white
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Figure E.3 Current state of the knowledge base containing two observations
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Figure E.4 Second new observation to be inserted into the knowledge base
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Figure E.5 Current state of the knowledge base containing three observations
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