
University of Miskolc

Doctoral Thesis

E�ciency Analysis of In�ection Rule
Generation

Author:

Zsolt Tóth

Supervisor:

Dr. habil. László Kovács

A thesis submitted in ful�lment of the requirements

for the degree of Doctor of Philosophy

in the

Jozsef Hatvany Doctoral School

Faculty of Mechanical Engineering and Informatics

University of Miskolc

December 19, 2014

Pintyő
Typewriter
DOI: 10.14750/ME.2015.009

http://www.university.com
tothzs@iit.uni-miskolc.hu
kovacs@iit.uni-miskolc.hu
Research Group Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
http://www.university.com

Declaration of Authorship

I, Zsolt Tóth, declare that this thesis titled, 'E�ciency Analysis of In�ection Rule

Generation' and the work presented in it are my own. I con�rm that:

� This work was done wholly or mainly while in candidature for a research degree at

this University.

� Where any part of this thesis has previously been submitted for a degree or any

other quali�cation at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

�Deadlines re�ne the mind. They remove variables like exotic materials and processes

that take too long. The closer the deadline, the more likely you'll start thinking waaay

outside the box."

Adam Savage

Recommendation

Zsolt Tóth has started his studies at the University of Miskolc in 2006. He has got a

Bachelor Degree in Information Technology and he was specialized to Web Technologies

in 2010. Then he got his Master Degree in Computer Science in Application Development

speci�cation in 2011. After his master studies he successfully applied to the József

Hatvany Doctoral School. He �nished his doctoral studied and started work as Assistant

Lecturer at the Department of the Information Science at the University of Miskolc. He

teaches programming software testing and database management. During his work he

contributed in the writing of 5 journal papers, a book chapter and 14 conference papers.

December 19, 2014

Dr. habil. László Kovács

UNIVERSITY OF MISKOLC

Abstract

Faculty of Mechanical Engineering and Informatics

Department of Information Technology

Doctor of Philosophy

E�ciency Analysis of In�ection Rule Generation

by Zsolt Tóth

This paper focuses on the learning of in�ection rules and grammar induction. In�ec-

tion algorithms usually require the numerical representation of the words. The existing

mappings do not consider the phonetic features of the letters. Thus a method has been

developed to crate a phonetic features based alphabet. The yielded alphabet has been

shown superior to the ASCII code table and the traditional alphabet based encodings.

The induction of in�ection rules is considered as a classi�cation problem. To create

an e�cient in�ecting algorithm, the problem domain has been analyzed. My analysis

showed that there are numerous linear non separable cluster pairs in the training set

of 54.000 (stem, in�ected form) pairs. The high number of the linear non�separable

clusters could yield decrease the precision of the standard classi�cation methods. To

reduce the number of the linear non�separable cluster pairs, I have proposed a novel

in�ection algorithm. The algorithm uses classi�er to determine the in�ection rule of the

regular and untrained words and it uses Associative memory to store the irregular words.

An in�ection rule is considered irregular if its frequency is low. The proposed method is

compared with standard in�ection algorithms.

In the topic of grammar induction the e�ciency of the existing grammar induction meth-

ods were measured. To compare these algorithm I have designed a grammar induction

and text mining framework. However there are several machine learning frameworks but

none of them focus on the modeling of formal grammars and the grammar induction.

My framework provides the necessary classes to model any kind of formal grammars in

Chomsky hierarchy and it de�nes interfaces for grammar induction and parsing algo-

rithms. Some context�free grammar induction methods was implemented in the frame-

work. Experimental results show that the framework is able to model formal grammars.

University Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

Acknowledgements

This dissertation contains the results of many years of work that would not have been

realized without the support of others.

First and foremost I would like to thank to my supervisor Dr. habil. László Kovács for

his continuous support and help during my work. I would like to thank to the members

of the Department of the Information Technology for their help, remarks and advises.

I am thankful to my parents who made me possible to learn and supported me from the

beginnings.

I also would like to thank to Dóra Pászinczki for her support and patience.

v

Contents

Declaration of Authorship i

Recommendation iii

Abstract iv

Acknowledgements v

List of Figures ix

List of Tables xi

Abbreviations xii

Symbols xiii

1 Introduction 1

1.1 Research Goals . 2
1.2 Dissertation Guide . 2

2 Theoretical Background 5

2.1 Categorization of Natural Languages . 5
2.1.1 Characteristics of Hungarian Language 6
2.1.2 Comparison of European Languages 7

2.2 Text Mining . 7
2.2.1 Natural Language Processing Projects for Hungarian 7

2.3 Formal Languages . 8
2.3.1 Formal Grammars . 8

2.3.1.1 Chomsky�Hierarchy . 9
2.3.1.2 Context�Free Grammars 11

Parsing of Context�Free Grammars 11
Induction of context�free grammars 11

2.4 Conclusions . 11

3 Complexity Analysis of the In�ection Induction Problem 13

vi

Contents vii

3.1 Linear Separability . 14
3.1.1 Testing Linear Separability with Linear Programming 15
3.1.2 Multiple Sets . 18
3.1.3 Cost Analysis of the Simplex Method based Linear Separability

Testing . 18
3.1.3.1 Simplex Method . 18
3.1.3.2 Random Case . 19
3.1.3.3 Separable Case . 20

3.2 Phonetics . 21
3.2.1 International Phonetic Alphabet 22
3.2.2 Phonetic Features of Hungarian . 22

3.3 Vector Space Representation . 25
3.3.1 Dimension Reduction based on Principal Component Analysis . . . 26

3.4 Generation of Phonetic Alphabet . 28
3.5 Linear Separability of In�ection Rules in Hungarian 30

3.5.1 Linear Separability of In�ection . 31
3.5.1.1 Visualization . 32

3.6 Conclusions . 32

4 Induction of In�ection Rules with Classi�cation and Associative Mem-
ory 35

4.1 Computational Morphology . 35
4.1.1 Hungarian Solutions . 37

4.2 Dataset . 37
4.2.1 Categories . 38

4.2.1.1 Transformation String . 38
4.2.1.2 Evaluation of Problem Domain 39

4.3 Standard Classi�cation Methods . 40
4.3.1 Precision . 40
4.3.2 Learning Cost . 42
4.3.3 Size of the Classi�er Structure . 42
4.3.4 Evaluation . 43

4.4 Proposed AMC Method . 43
4.5 Experimental Results . 46

4.5.1 Precision . 46
4.5.2 Size of the data structure . 48
4.5.3 Time Cost . 50

4.6 Evaluation . 52
4.7 Conclusion . 53

5 META Framework 55

5.1 Data Mining and Text Processing Frameworks 55
5.1.1 Weka . 56
5.1.2 RapidMiner . 56
5.1.3 cfgrep and JavaCFG . 56
5.1.4 UIMA Standards . 57
5.1.5 GATE Framework . 57

Contents viii

5.1.6 TectoMT . 57
5.1.7 Zemberek Framework . 58

5.2 Purpose of the Framework . 58
5.3 Components of META . 59

5.3.1 core module . 60
5.3.2 filter and analyzer modules . 62
5.3.3 grammar module . 62

5.3.3.1 Symbol Representation 62
5.3.3.2 Rule Representation . 63
5.3.3.3 Parsing and Learning of Grammars 64

5.3.4 Context�Free Grammar Extension 65
5.4 Implemented Methods . 65

5.4.1 Parsers . 66
5.4.1.1 CYK Algorithm . 66

5.4.2 CFG Induction . 67
5.4.2.1 TBL Algorithm . 67
5.4.2.2 ITBL Algorithm . 68
5.4.2.3 Heuristical pre-reduction with TBL and ITBL Algorithm 69
5.4.2.4 Inductive CYK algorithm 70

5.5 Experimental Results . 71
5.5.1 Measurements . 71
5.5.2 Results of TSabc . 72
5.5.3 Results of TSSQL . 72

5.6 Conclusions . 73

6 Summary 75

6.1 Contribution . 75
6.2 Future Works . 77

A Zoomed Figures 78

B Source Codes 81

B.1 MatLab Application . 81
B.2 META Framework . 81

B.2.1 Framework . 81
B.2.2 Documentation . 81

Bibliography 82

Author's Publications 88

List of Figures

2.1 Chomsky Hierarchy . 10

3.1 Examples for linear separability . 16
3.2 Time cost of Simplex method based linear separability testing 19
3.3 Time cost depends on dimension number with random points 20
3.4 Time cost depends on set size with random points 20
3.5 Time cost depends on the number of dimensions with separable point sets 21
3.6 Time cost depends on the size of point sets in separable case 21
3.7 International Phonetic Alphabet � Vowels [Ass99] 22
3.8 International Phonetic Alphabet � Consonants [Ass99] 23
3.9 Dimensionality reduction . 26
3.10 Principal Component Analysis Example [Wik14] 27
3.11 User Interface of the developed MatLab Application for Hungarian 28
3.12 Phonetic features based Hungarian alphabet 29
3.13 Linear Separability with Alphabetical and Phonetic encoding 33

4.1 Precision of Naive Bayes Classi�er . 41
4.2 Precision of K* Classi�er . 41
4.3 Precision of Multilayer Perceptron Classi�er with di�erent hidden layers . 42
4.4 Learning Cost of the Tested Classi�ers . 42
4.5 Size of the Tested Classi�ers . 43
4.6 Common Model of In�ection Algorithms 44
4.7 Model of the presented In�ection Algorithm 45
4.8 Precision with Naive Bayes Classi�er and Alphabetical Encoding 47
4.9 Precision with Naive Bayes Classi�er and Phonetic Encoding 48
4.10 Precision with Multilayer Perceptron Classi�er and Alphabetical Encoding 48
4.11 Precision with Multilayer Perceptron Classi�er and Phonetic Encoding . . 49
4.12 Size of the data structure for the in�ection algorithm 49
4.13 Size of the data structure for the in�ection algorithm 50
4.14 Time Cost with Naive Bayes Classi�er . 51
4.15 Time Cost with Multilayer Perceptron Classi�er 51

5.1 Architecture of META framework . 60
5.2 core package of META framework . 61
5.3 Hierarchy of Symbol classes. 63
5.4 Class hierarchy of GrammaticalRule classes. 64
5.5 Parse and Learn Strategies . 65
5.6 CYK Algorithm . 66

ix

List of Figures x

5.7 Heuristical pre-reductions �rst step . 69
5.8 Heuristical pre-reductions second step . 70
5.9 Inductive CYK algorithm . 71
5.10 Time costs on TSabc . 73
5.11 Time costs on TSabc . 74

A.1 User Interface of the developed MatLab Application for Hungarian 78
A.2 Precision of Multilayer Perceptron Classi�er with di�erent hidden layers . 79
A.3 Learning Cost of the Tested Classi�ers . 80

List of Tables

2.1 Characteristics of Some European Languages 7
2.2 The Chomksy hierarchy . 10

3.1 Phonetic Features of Vowels . 23
3.2 Phonetic Features of Consonants . 24
3.3 Generated Phonetic Alphabet . 30
3.4 Linear Separability Ratio of Tested Representation for Hungarian Ac-

cusative Case . 32

4.1 Levenshtein distance of "alma" and "almát" words 38
4.2 Number of transformations in categories 39
4.3 Comparison of Standard and AMC Methods 52
4.4 Precision of AMC Algorithm . 53

5.1 Comparision of Frameworks . 59
5.2 Characteristics of TSabc . 72
5.3 Results on TSabc . 72
5.4 Characteristics of TSSQL . 73
5.5 Results on TSSQL (ms) . 73

xi

Abbreviations

SVO Subject Verb Oobject

CFG Context�Free Grammar

PCFG Probabilistic Context�Free Grammar

GA Genetic Algorithm

NL Natural Language

NLP Natural Language Processing

META Miskolc Environment for Text Analysis

NP Non�deterministic Polynomial�time

XOR Exclusive OR

TM Text Mining

DM Data Mining

OASIS Organization for the Advancement of Structured Information Standards

UIMA Unstructured Information Management Architecture

GUI Graphical User Interface

abcd computer program related word

URL Uniform Resource Locator

XML eXtensible Markup Language

JAXB Java API for XML Binding

API Application Programming Interface

xii

Symbols

ω sentence

ωi ith word of a sentence

L formal language

G formal grammar

LG language generated by G

T set of terminal symbols

N set of non�terminal symbols

P set of production rules

S set of sentence symbols

a, b, . . . terminal symbols

A,B, . . . non�terminal symbols

α, β, . . . symbol sequence

| α | length of symbol sequence

A→ α replacement rule

S →∗G ω deduction in n steps

l letter

li,k kth feature of letter li

d(li, lj) distance of li and lj

A,B, . . . matrices

a,b, . . . vectors

X,Y random variables

E(X) expected value of E

x average of X

σ(X) deviation of X

cov(X,Y) covariance of X and Y

xiii

Symbols xiv

Σ covariance matrix

fi feature (random variable)

λ eigenvalue

Λ vector of eigenvalues

v eigenvector

V vector of eigenvectors (matrix)

[0, 1, . . .] row vector

[0, 1, . . .]T column vector

I identity matrix

X cluster of objects

P (W, t) hyperplane

X〉 ‖ X| X〉 and X| are linear separable

A,B, . . . sets

O() order of function

πp partition p

T (ω) parse table of ω

U samples

U+ positive samples

U− negative samples

Gω sub�grammar related to ω

To my beloved family . . .

xv

Chapter 1

Introduction

Natural Language Processing is an active research area of computer science and knowl-

edge engineering. There are also text books in the topic of text mining [Dom07] and

natural language processing [Kor08] too. The applications [Cho03] and researches are

usually focus on a speci�c natural language. The English is the target language of most of

these applications and researches. On the other hand e�orts have been made in other lan-

guages such as Czech [P�10] Portuguese [BCM+08] The "Szószablya" [RG06, HKN+04]

may be the most famous Hungarian project in this �eld. The Hungarian Academy of

Science has developed a plagiarism checker [Pat06a, Pat06b]. Moreover it is an actively

researched in the Doctoral School too. For example there are works on the knowledge ex-

traction from text or speech [Bar13], on the modeling of the extracted knowledge [Var11]

and on the text generation [Bed12].

Learning of in�ection rules have an important role in many natural language processing

tasks. The presented results connect to the previous works of our Department in various

ways. My work focuses on the learning of in�ection rules which belongs to the natural

language processing topic. The proper in�ecting is crucial for text analysis and gener-

ation methods. In�ection usually modi�es slightly the meaning of the base word and

an inappropriate in�ected word could make the sentence hard�to�understand or change

its meaning. The methods were tested on Hungarian text and an e�ective method has

been developed. A framework has been designed and implemented to test the e�ciency

of methods.

1

Chapter 1. Introduction 2

1.1 Research Goals

The main goal of my researches was to analyze the di�erent in�ection rule generation

methods and to develop an e�cient algorithm for Hungarian language. The word repre-

sentation has a key role to develop an e�cient algorithms.The words are usually repre-

sented in a vector space because it allows to perform well�known methods and operations.

There are many di�erent approaches to convert the words into real vectors. These con-

versions require to de�ne a real value for each letter in the alphabet. In the current

solutions have some drawbacks. For example the phonetic features of the letters are not

considered or the distance of the words is usually constant. Hence one of my goals were

to create an mapping which is based on the phonetic features and the distance of two

letter represent their similarities.

In�ection can be considered as a string transformation which transforms the base word

into its in�ected form. The transformation can be determined for each word pairs and

it can be described by a transformation string. The induction of the in�ection rules

can be converted into a classi�cation task where the inputs are the base words and the

transformation strings are the categories. My goal is to develop an e�cient methods

to learn the in�ection rules as string transformations. A training set of about 54.000

samples are used to measure the performance of the developed algorithm.

Formal Grammars is a mathematical formalism to model the grammatical structures

of both natural or arti�cial languages. Formal Grammars can be de�ned manually or

automatically. The manual generation requires an expert of the given language and it is

a time�consuming and costly job. Context�Free Grammars widely used because they are

powerful enough to model many features of natural languages. On the other hand there

are arguments against the context�freeness of natural languages [Shi87]. Analysis and

comparison of Context�Free Grammar induction methods is an important goal of my

researches. To measure the performance of Context�Free Grammar induction methods

a novel framework is designed.

1.2 Dissertation Guide

The rest of this paper is organized as follows.

Chapter 2 gives a brief overview of the theoretical background of the used formalism

and terminology in the paper. A few di�erent classi�cations of the formal languages is

presented and the properties of Hungarian are emphasized. Then it gives a short overview

of the text mining and natural language processing tasks. In�ection is presented here as

Chapter 1. Introduction 3

inverse of the stemming which is a well�studied text mining task. Next the mathematical

bases of the formal languages are presented. The Chomsky hierarchy is reviewed which

is the most�well�known classi�cation of formal grammar and it is based on the form of

the production rules. Context�Free Grammars are detailed due to their importance in

grammar modeling. Finally some open questions are presented.

Chapter 3 presents a novel method to create a mapping of letters to numerical values

based on their phonetic features. This chapter gives a short introduction of the pho-

netic features of the letters. Then it details how the letters can be converted into real

vectors based on their phonetic features. This representation allows the usage of princi-

pal component analysis which is also reviewed. Next a MatLab application is presented

which were developed to create a phonetic alphabets. A resulted phonetic alphabet is

evaluated and it is compared with ASCII and traditional alphabet based encodings. The

experimental results showed the phonetic alphabet based encoding superior. When the

induction of in�ection rules is considered as a classi�cation task, then the neural net-

works show poor precision. The high number of non linear separable clusters can be

a reason of the poor performance. A linear programming based approach is chosen to

test linear separability of the clusters and its computational cost is estimated. The test

were performed on a training set of about 54.000 samples with alphabetical and phonetic

encoding. These results also showed the phonetic encoding superior.

Chapter 4 introduces a new classi�cation based in�ection algorithm enhanced with

associative memory. There is a brief overview of the algorithms of computational mor-

phology. These works mainly focused on morphological analysis and stemming, moreover

only a few works are focused on Hungarian. Then the in�ection as a classi�cation prob-

lem is detailed. Next the standard classi�ers were tested to solve the problem. The

measurement are focused on the precision, the learning cost and the size of the classi�-

cation structure. Then the proposed in�ection method is detailed. The novel algorithm

is tested with di�erent size of the associative memory. Finally the experimental results

are evaluated and the novel methods is compared with the traditional algorithms.

Chapter 5 presents the META which is a novel grammar induction and text mining

framework. The related data and text mining frameworks and works are reviewed. The

overview shows that there is no common environment to model formal grammar. Purpose

of the development is to provide a framework to model formal grammars and de�ne

interfaces for induction and parsing methods. The architecture and the main components

of the framework are detailed and the formal grammar module is emphasized. The design

and the important decisions are also presented. Next there is a brief overview of some

well�known context�free grammar induction methods. These methods are implemented

in the framework and their time cost is measured. Our experimental results are also

Chapter 1. Introduction 4

summarized. So the ability of META framework to model formal grammars has been

con�rmed.

Chapter 6 sums up the new scienti�c results of my work and presents the future tasks.

Chapter 2

Theoretical Background

This chapter gives a brief overview of the theoretical background of Natural Langauge

Processing and the mathematical formalism of Formal Grammars. Natural languages

can be classi�ed based on their aspects such as their history, word order or morphology.

The certain properties of the Hungarian language are emphasized during the overview.

Natural languages often use in�ection to slightly modify the meaning of word. The in-

�ection rules are abstract and they are formalized for humans. The automatic generation

of in�ection rules is an open question in computer science and the most of current works

are focused on other languages [Pin91, Mol01, GAH04].

2.1 Categorization of Natural Languages

Natural languages can be classi�ed by various aspects such as their history, word order or

morphology. In historical linguistics the languages are organized into language families.

There is an ancestor descendant relationship within the families, so a language families

are often represented as a tree. The root of the tree is called proto�language such as Indo-

European, Uralic, Caucasian, American, Austroasiatic, and Sino-Tibetan languages. A

proto�langauge is the latest common ancestor of a language family. The family tree

has multiple levels, the nodes are subcategories and the leaves are the languages. These

families contain other subgroups. For example the Indo-European languages can be

classi�ed into Anatolian, Tocharian, Germanic, Italic, Celtic, Armenian, Balto-Slavic,

Hellenic, Indo-Iranian and Albanian subgroups [GI90]. These subgroups also can be

divided into subcategories. Most of the spoken languages in Europe belong to the Indo-

European family. For example English and German are Germanic, Spanish, France

and Italian are Italic, and Slovakian and Polish are Balto-Slavic languages. However

Hungarian is a Uralic language [Hel03].

5

Chapter 2. Theoretical Background 6

In linguistic typology the languages are classi�ed by their structural features such as word

order. From the point of view of typology subject, object and verb are distinguished and

the languages are classi�ed by their order. There are nine typological classes plus a

category for free word order languages. The vast majority of the languages belong to

Subject-Object-Verb or Subject-Verb-Object category [Mey10].

In morphology the languages are classi�ed by how the words are formed from morphemes.

Isolating languages and synthetic languages are the main groups in morphology. In isolat-

ing languages the morpheme per word ratio is low. The syntax of the words depends on

their position and auxiliary words are used to express complex concepts. Chinese and En-

glish are examples for isolating languages. In case of synthetic languages the morpheme

per language ratio is high. Words are formed by a�xing the stem morpheme. Synthetic

languages are often subdivided into polysynthetic, fusional, and agglutinative languages.

In polysynthetic languages the word are long and their meaning could be a whole sen-

tence in other languages. Some Native American languages are polysynthetic. Fusional

languages have some common aspects with analytic languages, but their ancestors were

synthetic languages. Many Indo-European languages belong to the group of fusional

languages. Int agglutinative languages, such as Japanese, Hungarian or Esperanto, the

words are formed by combination of the stem with phonetically unchangeable a�xes.

The main di�erence between agglutinative and fusional languages is that there are more

a�xes in agglutinative languages. Moreover the stem and the a�xes can be separated

easily in agglutinative languages.

2.1.1 Characteristics of Hungarian Language

Hungarian is an agglutinative language and belongs to the Uralic language family. The

word order is not strict and it is mostly used to emphasize the content. In�ection is used

to de�ne the grammatical role of the words. An in�ected form of a word is called a case.

There are 17-28 di�erent [Mor03]. A chain of in�ection has been evolved in Hungarian

because of two reasons. Firstly the a�xes are put in the end of the word in most of

the cases. Secondly an in�ected word can be the base word of another in�ection. For

instance in the sentence �Peter has refused our calls� the �our calls� is the object and

it is plural. This sentence in Hungarian is �Péter visszautasította a hívásainkat� where

the objects is �hívásainkat�. The a�xes can be separated as �(hívás)(aink)(at)� where

�hívás� is the stem, �aink� means �our� that the word is in plural and �at� denotes it is

an object.

Chapter 2. Theoretical Background 7

2.1.2 Comparison of European Languages

Table 2.1 shows some of the above detailed aspects of some European languages. It

shows also that Hungarian di�ers from the major European languages. Most of these

languages belong to the West�Germanic or Italic language families, but Hungarian is

an Uralic languages. These languages usually have the same word order but it is not

given for Hungarian. Finally Hungarian is an Agglutinative language while the others

are mostly fusional.

Table 2.1: Characteristics of Some European Languages

Language Family Word Order Morphology
English West�Germanic SVO Isolating
French Italic SVO Fusional
German West�Germanic Flexible Fusional
Hungarian Uralic Free Agglutinative
Italian Italic SVO Fusional
Russian Balto�Slavic Free Synthetic
Spanish Italic SVO Fusional

2.2 Text Mining

Text mining is an umbrella term of analytical methods to extract information from text

or unstructured documents. It has a strong relationship with Natural Language Process-

ing which is an actively investigated �eld of computer science. However its theoretical

backgrounds were laid in the middle of the last century [Cho56, Cho59, Lev66, Nav01],

but the computational capacity was not enough to deal with natural language process-

ing tasks and solve real world problems. The invention of the World Wide Web and the

widely available Internet connection resulted the rapid proliferation of digital documents.

Today about 80 per cent of the information is stored in text based documents [Dom07].

At the dawn of this century the natural language processing became a popular topic

again [DFG11, Por01, GAH04]. This paper focuses only on the induction of in�ection

rules and formal grammars.

2.2.1 Natural Language Processing Projects for Hungarian

However there are serious e�orts taken in the �eld of the text mining and natural language

processing in general, but there are only a few works which focus on Hungarian language.

Moreover the most of these works focuses on Natural Language Processing tasks such as

stemming [HKN+04, RG06] or learning morphemes [Dud06]. For example the Szószablya

Chapter 2. Theoretical Background 8

is Hungarian stemming algorithm or the KOPI [Pat06a, Pat06b] plagiarism search engine

of the Hungarian Academy of Science. On the other hand my researches were focused on

not the stemming, but the in�ection of Hungarian words. In�ection can be considered

as a string transformation which is used in many natural languages and it also plays an

important role in Hungarian too.

In the text books there are abstract in�ection rules which are marked out for human

understanding. To generate complex text in natural languages, these abstract in�ection

rules have to be converted into a more speci�c form which can be used by computer

programs. This conversion is a di�cult and costly task. There are a few researches

on the generation of in�ection rules, but these works are focused on other languages

[Con98, RDM65].

2.3 Formal Languages

My researches were also focused on the induction of Formal Grammars which are often

used to model the structures natural languages. The theory of formal grammars was laid

in the mid 1950s by Noam Chomsky [Cho56] [Cho59]. The most popular classi�cation of

formal grammars is called Chomksian�hierarchy and it distinguishes the following four

categories: Regular, Context�Free, Context�Sensitive and Recursive Enumerable Gram-

mars. Although many grammar processing methods were developed in the 1950s and

1960s, they were not used in real world applications due to their computational com-

plexity. Since the edge of the century many grammar induction algorithm have been

developed, implemented and tested.

In the literature, there are only a few comparison of Context�Free Grammar induction

methods. A common environment was required to compare the di�erent induction algo-

rithms. However there are some data mining frameworks [HDW94, HFH+09, WFT+99,

FHH+05], tools [Min14], only few standards [OAS14, Apa14] and educational softwares

[Gru06] focus on text mining and grammar processing.

2.3.1 Formal Grammars

Formal languages and formal grammars are often used to model grammatical structures

of the natural languages. A formal language is a set of valid sentences L = {ω} where L
denotes the language and ω stands for a sentence. Formal languages L can be given as a

set of sentences, but it is very costly. Thus a formal language is often given by a formal

grammar G. A G grammar generates a L language if each sentence of the language can

Chapter 2. Theoretical Background 9

be derived by the grammar and it is denoted by LG . The G grammar is de�ned as a

quadruplet 〈T ,N ,P,S〉 where

T is a set of the terminal symbols (a, b, c · · · ∈ T),

N is a set of the non terminal symbols (A,B,C · · · ∈ N),

P is a set of production rules P ⊆ αAβ × γ where and α, β, γ, · · · ∈ {T ∪ N}∗

S is a set of sentence symbols S ⊆ N .

The T , N , S cannot be empty set and there is at least one sentence symbol in ev-

ery grammar which is a non�terminal symbol. There are de�nition where S is not a

set but a single non�terminal symbol. Moreover S denotes a set of sentence symbols

(S = {S1, S2, . . . Sn}). The replacement is given by the production rules. In an arbitrary

formal grammar any sequence of symbols which contains at least one non�terminal sym-

bol can be replaced by an other sequence of symbols. But a sequence of terminal symbols

cannot be replaced. The replacements are denoted by A⇒ a. A complex formal gram-

mar contains many production rules and the deduction of a sentence requires multiple

replacements. Deduction is a process which derive ω sentence from a sentence symbol

based on the production rules. The chain of rules can be written as S ⇒ αAβ ⇒ · · · ⇒ ω,

but this notation is quite long and contains too many details. So S ⇒∗G ω denotes that

sentence ω can be generated from sentence symbol S in �nite steps based on grammar

G.

2.3.1.1 Chomsky�Hierarchy

Formal grammar are often classi�ed on the basis of their production rules. A well-known

classi�cation of formal grammar was made by Noam Chomsky [Cho56, Cho59] which

is called Chomsky hierarchy and it is showed in Figure 2.1 The form of the rules are

summarized in Table 2.2. The most speci�c class are called regular grammars where a

non terminal symbol always can be replaced by terminal symbol or a terminal and a

nonterminal symbols. Regular grammar can be divided into two subclasses: left regular

grammar and right regular grammars. Left regular grammars contains rules in form of

A → a and A → Ba while the rules of right regular grammars are in form of A → a

and A → aB. From the point of view of practice in a left regular grammar the word is

written from left to right, in a right regular grammar it is written from right to left.

In context�free grammars a non terminal symbol can be replaced by an arbitrary sequence

of terminal and non terminal symbols. Context�free grammars are often used to model

Chapter 2. Theoretical Background 10

natural languages due to two reasons. First there are many e�cient algorithms to process

context�free grammars. Secondly they can capture many aspects of natural languages.

Figure 2.1: Chomsky Hierarchy

In context sensitive grammars the replacement of a non terminal symbol depends on

its context. If the length of the context is zero (| α |=| β |= 0) then the grammar is

context�free. So the context�free grammars are special context sensitive grammars. The

most general class is obviously the recursively enumerable grammars because it allows

arbitrary replacements.

Table 2.2: The Chomksy hierarchy

Class Production rules
Recursively Enumerable α→ β

Context Sensitive αAβ → αγβ

Context Free A→ γ

Regular A→ a and A→ Ba or A→ aB

In the literature, there are many algorithms to process or induce regular grammars. In

the �eld of natural language processing the context�free and context sensitive grammars

are widely used to model natural languages. However both of these models are used,

there is no accordance in the question where the natural languages are belong to [Shi87].

While English can be well modeled by Context�free grammars, some other languages

such as Spanish, Russian or Hungarian have context�sensitive aspects. For example in

Spanish the nouns have gender and the adjective has to match to its noun. In Russian

the words nouns have gender and the words are in�ected and the meaning of the word

depends on its case. Although there are no genders in Hungarian, the 17 di�erent cases

of a word make the language complex.

The di�erent grammar classes can be implemented by automatons. Regular grammars

can be modeled by �nite state automatons. The context�free grammars can be imple-

mented by non�deterministic push�down automaton. The context�sensitive grammars

can be modeled by linear�bounded non�deterministic Turing machine. The importance

Chapter 2. Theoretical Background 11

of recursively enumerable languages is mostly theoretical. This is the most general gram-

mar where an arbitrary string of symbols can be replaced by another symbol sequence.

Thus it can be implemented by the most general automaton, the Turing machine.

2.3.1.2 Context�Free Grammars

The context�free grammars are enough e�cient tools, moreover they can well represent

some signi�cant feature of the natural and arti�cial languages. Thats is why context�free

grammars are often used in natural language processing tasks.

Parsing of Context�Free Grammars The parsing algorithms decide a sentence ω is

in the language generated by a grammar LG or not. The parsing is a quite important task

and it is used in many induction algorithms. Thus the e�ciency of parsing algorithm is

essential. Mathematically the parsing algorithms can be de�ned as the following function.

parse : {ω} × {G} → {true, false} (2.1)

parse(ω,G) =

{
true ∃S ∈ SG , S →∗G ω
false otherwise

}
(2.2)

Induction of context�free grammars Induction of Context�Free Grammars re-

quires a training set which contains positive and negative samples. While it is easy to

�nd positive sentences, the generation of negative samples is a hard task. Probabilis-

tic Context�Free Grammars can be generated from only positive sentences. There are

top�down [NI00, NM02] and bottom�up [SK99, Sak05, UJ07, OU09] methods for this

task. The generation of Context�Free Grammar from samples is a NP�hard problem.

However the performance of these algorithms is often measured one by one on di�erent

training sets, but there is no common framework to implement, test and compare these

algorithms.

2.4 Conclusions

In this chapter the theoretical background of Linguistic,Text Mining, Natural Language

Processing and Formal Grammars were brie�y summarized. The natural languages were

classi�ed based on historical, topological and morphological approaches. The properties

of the Hungarian language were emphasized because my researches were focused on it.

Chapter 2. Theoretical Background 12

Then the current state of text mining and its subtask the stemming were reviewed. There

is a lack on the e�orts in learning the Hungarian in�ection rules. Finally there was an

overview of the mathematical formalism of the formal grammars which are widely used

to model natural languages.

Chapter 3

Complexity Analysis of the

In�ection Induction Problem

The complexity of a problem can be caused by many factors such as computational

complexity, time cost, or size and so on. These factors are usually analyzed separately.

In algorithm theory, the computation complexity is the most important measurement.

There are classes of complexity and algorithms are distinguished belongs to one of these

classes and it is usually given with big O notation [Knu76]. For example bubble sort is a

polynomial algorithm because its time cost is O(n2) and binary search is a logarithmic

algorithm with O(log(n)) cost.

The determination of the computational complexity requires theoretical analysis which

could be a hard task for advanced algorithms and methods with many parameters such

as heuristic searches, arti�cial neural networks, genetic algorithms and so on. In this

case the time cost of the algorithms is measured directly with �xed parameters. Based

on the experimental results the time cost can be estimated as a function of the di�erent

parameters.

There are problems which are hard to solve even with e�cient algorithms because of the

size of the data. The huge amount of data usually is a great challenge in data processing

and storage tasks. For example multiple levels of triggers are used [TG05] for data

processing in the Large Hadron Collider of CERN to �lter the events. By the �ltering

these triggers reduces the size of the collected data about the measurements, thus it is

possible to process and store the data. Huge amount of data is also a challenge in data

storage and there are some solutions such as the Bigtable of Google [CDG+08].

The complexity of the in�ection rule induction depends on many aspects of natural

languages. There can be thousands of words in the vocabulary of a natural language.

13

Chapter 3. Complexity Analysis of the In�ection Induction Problem 14

Moreover the vocabulary changes over time, old�fashioned words extinct and new words

are coined or the meaning of the words changes. For example keyboard was a part of the

piano about 60 years ago, but these days keyboard is usually associated with computers.

In language text books, the words belong to di�erent in�ection classes [MLCL04]. Linear

separability of the clusters is vital to create e�cient classi�ers so the complexity of

learning in�ection rules is measured as the linear separability of the di�erent in�ection

classes. Linear separability depends on the representation of the words. Vector space

representation of words were used during my research because it is widely used in Natural

Language Processing tasks. To measure the linear separability a simplex method based

testing algorithm was implemented. The tests were performed on a traditional alphabet

based encoding and a novel phonetic features based alphabet.

3.1 Linear Separability

Complex objects in any problem domain are represented by a set of features. These

observations are usually converted into numerical vectors. Thus each observation can be

described as a feature vector v ∈ Rd in a d dimensional space where d is the number of

features. This representation allows to handle the observations in a formal way. There

are many analysis on the vector space model to provide an e�cient feature representation.

The goal of classi�cation in vector space model is to assign a category value for the

vectors based on their feature values. The binary classi�cation problem is related to the

case when two category values are de�ned in the domain. The clusters of elements which

are belonging to class X1 and X2, can be disjoint or overlapped in general case. This

paper focuses on the case when the two clusters are linear separable. In this case there

are many e�cient algorithm for the classi�cation problem.

In the case of linear separable clusters, there is a hyperplane P (w, t) = {x | xwT +t = 0}
which separates them. We use the notation X1 ‖ X2(P) or simply X1 ‖ X2 if the elements

of X1 are on one side of hyperplane P and the elements of X2 are on the other side.

Linear separability is important feature for many machine learning tasks such as clas-

si�cation with Arti�cial Neural Networks [Yeg09, Zha00] or Support Vector Machines

[SV99]. For example Perceptron network is able to learn basic logical functions like

AND, OR, NOT. But it cannot learn XOR function because the XOR problem is not

linear separable. Multilayer Perceptron is improved by hidden layers thus it can learn

the XOR problem, but the determination of number and the size of hidden layers is not

an easy task.

Chapter 3. Complexity Analysis of the In�ection Induction Problem 15

3.1.1 Testing Linear Separability with Linear Programming

Due to the importance of linear separability, there are many di�erent methods to test it.

These methods can be categorized [Eli06] based on the applied mathematical technique.

Although these algorithms provide exact solution, they require many computation. Test-

ing based on convex hulls is quite intuitive and easy to understand [Sha75]. If the convex

hulls of the sets have intersection then the sets cannot be separated linearly. The draw-

back of this method is the signi�cant computational cost of the convex hull determination

process.

The methods based on linear programming are easy to understand and there are many

e�cient solvers .Testing based on linear separability transforms the d dimensional points

into d + 1 dimensional points. The new dimension value is initially 1 for each point.

Next, the elements of X2 cluster are mirrored to the Origo. Clusters X1 and X2 are

linear separable if and only if each of the transformed points are on the same side of the

hyperplane which crosses the Origo. Formally X1 ‖ X2 if ∃P (w, t) where Origo ∈ P (w, t)

and p < P (w, t) or p > P (w, t) where ∀p ∈ {X1 ∪ X2}. This transformation de�nes an

inequality system.

Figure 3.1a presents a separable case, there are two clusters where A = {(1)} and

B = {(2)}. The transformed clusters are A′ = {(1, 1)} and B′ = {(−2,−1)}. The

transformed points lay on the same side of hyperplane P (2/3, 0), so these two sets are

linear separable. Figure 3.1b shows a non linear separable case. Cluster A = {(1), (3)}
and cluster B = {(2)} is transformed into A′ = {(1, 1), (3, 1)} and B′ = {(−2,−1)}.
There is no line which crosses the Origo and both of the points are its same side.

Simplex method [NM65] is one of the best known and most widely used algorithm to solve

linear programming tasks and linear separability test. It is based on the pivot operation

and many software packages contains linear programming solvers such as MS Excel,

MatLab or SciLab. It can be used to solve both maximum or minimum optimization

tasks but the problem has to be in standard form. To test linear separability, the standard

normal form is used which is shown in Equation 3.1.

yb→ min

yA ≥ c

y ≥ 0

(3.1)

Chapter 3. Complexity Analysis of the In�ection Induction Problem 16

(a) Linear Separable Points

(b) Non Linear Separable Points

Figure 3.1: Examples for linear separability

where y is a n dimensional real vector of free variables, yb is the object function and

A ∈ Rm×n matrix which describes the coe�cients in constraints, where m is the number

of constraints.

The constrains are inequalities and they are given by the transformation of feature vec-

tors. Let X1 denote the Rs1×d matrix which represents X1 where d is the number of

Chapter 3. Complexity Analysis of the In�ection Induction Problem 17

features and s1 =| X1 | and X2 ∈ Rs2×d where s2 =| X2 |. Using matrix formalism the

transformation yields X ′1 and X
′
2 matrices as following X ′1 = [X1, 1] and X ′2 = −[X2, 1].

Matrix A is the concatenation of X1 and X2 i.e. A = [X ′1;X
′
2] so A ∈ R(s1+s2)×d.

Testing of linear separability can be considered as a minimum problem. There can be

many separator plane between X1 and X2. The presented linear program determines

only one of these planes. The plane P (w, t) is chosen by the object function which can

be formalized as
∑d

i=1 ciwi + t → min where ci is the ith coe�cient and wi is the ith

value of the normal vector w of the plane. In the current experiments, these coe�cients

were chosen to 1, thus the object function was w1 + w2 + · · · + t → min. Equation 3.2

shows the linear programming task which is used to test the linear separably of cluster

X1 and X2.

w1 + w2 + · · ·+ t→ min

[w, t]T

[
X ′

Y ′

]
> 0

(3.2)

To use simplex methods to solve the given linear programming task, it has to be converted

into standard form. By the following substitutions wi = wi_aux_1 − wi_aux_2 and t =

t1 − t2 the inequalities are transformed into grater equal relationship, [w, t]trans stands

for the transformed [w, t]. Moreover new constrains are de�ned, because the auxiliary

variables have to be non negative. Let Atrans ∈ R(s1+s2)×(2∗(d+1)) denote the transformed

A matrix. Equation 3.3 shows Atrans with auxiliary variables and equation 3.4 shows

the same matrix with values of A matrix.


a1,1_aux_1 −a1,1_aux_2 a1,2_aux_1 −a1,2_aux_2 . . . a1,d+1_aux_1 −a1,d+1_aux_2

a2,1_aux_1 −a2,1_aux_2 a2,2_aux_1 −a2,2_aux_2 . . . a2,d+1_aux_1 −a2,d+1_aux_2

a3,1_aux_1 −a3,1_aux_2 a3,2_aux_1 −a3,2_aux_2 . . . a3,d+1_aux_1 −a3,d+1_aux_2
...

...
...

... . . .
...

...


(3.3)


A(1, 1) −A(1, 1) A(1, 1) −A(1, 1) . . . A(1, d+ 1) −A(1, d+ 1)
A(2, 1) −A(2, 1) A(2, 1) −A(2, 1) . . . A(2, d+ 1) −A(2, d+ 1)
A(3, 1) −A(3, 1) A(3, 1) −A(3, 1) . . . A(3, d+ 1) −A(3, d+ 1)

...
...

...
... . . .

...
...

 (3.4)

Chapter 3. Complexity Analysis of the In�ection Induction Problem 18

w1_aux_1 − w1_aux_2 + w2_aux_1 − w2_aux_2 + · · ·+ t1 − t2 → min

[w, t]Ttrans [Atrans] ≥ 1

wi_aux_1, wi_aux_2 ≥ 0

t1, t2 ≥ 0

(3.5)

This transformation allows to solve the optimization task so that to test the linear

separability. Equation 3.5 shows the transformed minimization problem.

3.1.2 Multiple Sets

In real applications usually there are more than two classes. The above detailed method

can be used to decide if every pair of classes are linear separable or not. If each class can

be separated linearly from the others then these classes are piecewise linear separable.

In this case the sets can be separated by conical hulls [BM94]. Thus if the classes are

piecewise linear separable then there are conical hulls which separate the points of class

from others. This separation makes possible to create e�cient classi�cation of the points.

To sum up, the separability of multiple sets can be decided by the above detailed method.

3.1.3 Cost Analysis of the Simplex Method based Linear Separability

Testing

The above reviewed linear separability testing method, based on Simplex method

[NM65], has been implemented in Java in the META Grammar Induction and Text

Mining framework [5, 6, 9]. The Apache Commons Mathematical Library was used to

solve the optimization task because it is a well tested, reliable open source and free li-

brary. The testing method is implemented into the meta.core.linsep package because

it is not related directly to any grammar induction task. The result of testing is a logical

value which is true if X‖Y and false otherwise. It also provides a way to check piece-

wise linear separability. Experimental results shows that the simplex method has O(dp2)

complexity where d is the number of the dimensions and p stands for the number of the

points.

3.1.3.1 Simplex Method

The selection of the pivot element plays a very important role in Simplex algorithm.

There are di�erent selection rules but none of them is a silver bullet. The time cost of

Chapter 3. Complexity Analysis of the In�ection Induction Problem 19

the simplex method based testing algorithm was measured as a function of the number

of dimensions and the number of points. There were two additional case distinguished,

whether the sets are linear separable or not. It was necessary because the algorithm

throws an exception when it �nd the problem unfeasible. Due to this behavior of used

library there can be big di�erences in the time cost if the sets are linear separable. The

linear separability was tested only between cluster pairs.

The implementation was tested with two di�erent cases. In the �rst case the members of

classes were generated randomly. Thus there were only a few linearly separable classes.

Moreover if two classes are not linear separable then the simplex method is not feasible

so the algorithm throws and exception so it stops. In the second case, linear separable

classes were generated to measure the maximum time cost of the algorithm. Figure

3.2 shows the average measured time costs as a surface where the x axis stands for the

number of points, axis y denotes the number of dimensions and axis z is the measured

time cost.

Figure 3.2: Time cost of Simplex method based linear separability testing

3.1.3.2 Random Case

The experimental results show that the time cost of the simplex method is less if the sets

are non linear separable. The method was tested with di�erent dimension number from

1 up to 25. For each dimension count,the linear separability between two sets, whose size

was the same (5 to 1000), was tested . Figure 3.3 shows how the time cost depends on

the number of dimensions. The time cost grows with the number of dimensions linearly

thus it is not signi�cant. The lines shows how many point were in a set.

Chapter 3. Complexity Analysis of the In�ection Induction Problem 20

Figure 3.3: Time cost depends on dimension number with random points

Figure 3.4 shows how time cost depends on the size of sets. It shows clearly that the

time cost does not grow linearly with the size of sets. Based on these measurements a

polynomial connection between the time cost and the number of points can be assumed.

Thus the number of points in the sets has a higher impact on the time cost of the testing

algorithm.

Figure 3.4: Time cost depends on set size with random points

3.1.3.3 Separable Case

The applied optimization API throws exceptions if the tasks cannot be solved and stops

which improves the performance of the library. These exception were handled as X ∦ Y.
So if the clusters are not linear separable than the API stops the calculation. To measure

the cost of the method the linear separable case were tested too. The results show if two

sets are linear separable then its time cost is about 5 times of the linearly non separable

case. To compare the separable case with the random case, the measurement was run

with same dimension and size parameters, but in separable case the point sets were

generated in di�erent intervals.

Chapter 3. Complexity Analysis of the In�ection Induction Problem 21

Figure 3.5 shows the time cost as a function of the number of the dimensions. It can be

compared with Figure 3.3 which shows the random case. It can be seen that the time

cost grows linear with the number of dimensions.

Figure 3.5: Time cost depends on the number of dimensions with separable point sets

The connection of time cost and the number of points is shown in Figure 3.6. It shows

clearly the time cost also grows polynomial with the number of points. The biggest

set contained 1000 points and it took about 3 minutes to test linear separability. The

polynomial growth makes the calculation slow. Regression function fr(p) = ap2 + bp+ c

was calculated by linear regression with R2 = 0.9946. Based on this function the run

time of the algorithm was estimated like weeks. Time cost of testing for the two largest

point sets was estimated about 10 hours.

Figure 3.6: Time cost depends on the size of point sets in separable case

3.2 Phonetics

Written text can be considered as an encoding of speech with symbols called letters i.e.

the sounds are denoted by letters. The smallest parts of the speech are the sounds which

Chapter 3. Complexity Analysis of the In�ection Induction Problem 22

can be distinguished by.their phonetic features. Because letters usually denotes the same

or similar sound, the phonetic features of the letters can be assigned by linguists. Natural

languages can pronounce a letter di�erently even a word can have multiple pronunciation

such as the word "neither".

3.2.1 International Phonetic Alphabet

International Phonetic Association created a system of phonetic notation for oral lan-

guages which is called International Phonetic Alphabet [Ass99]. The notation of the

International Phonetic Alphabet is based on the latin alphabet and it uses other sym-

bols to denote sounds. This notation system is widely used by lexicons, dictionaries,

languages learners and teachers, translators, actors and so on. Beside the letters, dia-

critics are also used to compose symbols. The diacritics slightly modify the sound of

the previous letter. The latest version was released in 2005 and it contains 107 di�erent

letters and 52 diacritics.

Figure 3.7: International Phonetic Alphabet � Vowels [Ass99]

3.2.2 Phonetic Features of Hungarian

The International Phonetic Alphabet allows the notation of any sound of spoken lan-

guages, but the natural languages usually use only a subset of these sounds. The Hungar-

ian alphabet contains only 26 consonants and 14 vowels and these letters usually denote

Chapter 3. Complexity Analysis of the In�ection Induction Problem 23

Figure 3.8: International Phonetic Alphabet � Consonants [Ass99]

only one sound so only a part of the International Phonetic Alphabet is used to describe

Hungarian words. Because my research is focused on the induction of in�ection rules of

Hungarian, the phonetic features of letters of Hungarian alphabet are presented below.

The vowels and consonants have di�erent phonetic features. The presented model dis-

tinguishes the shape of the lips, the position of the tongue and the pitch in the case of

vowels and the voice, the way and the place of the production in the case of the conso-

nants. Table 3.1 shows the phonetic features of the vowels. The rows denote the position

of the tongue, the voice is de�ned by the columns and the italic letters stand for the

rounded vowels and the plain letter denote the non rounded ones. The phonetic features

of the consonants are summarized in Table 3.2. The rows show the di�erent places of

the sound production. The columns show the way of the sound production and within

these categories the voice is also distinguished. Because the pronunciation of the letters

can slightly di�er in natural languages, their phonetic features can be found in language

speci�c text books [ASA01, Zsu97].

Table 3.1: Phonetic Features of Vowels

Front Back
Close u,ú ü,¶,i,í
Mid o,ó ö,®,é
Open a,á e

Phonetic features have ordinal or categorical values. However linguists de�ned the cat-

egories for phonetic features neither ordering nor numerical values are de�ned for these

features. On the other hand ordering can be de�ned for some features, such as the pitch

can be low or high, the position of the tongue can be upper, middle or lower. Many well�

known data mining method [Jol05] can work only with numerical features. The proper

Chapter 3. Complexity Analysis of the In�ection Induction Problem 24

Table 3.2: Phonetic Features of Consonants

Way of Production Polsive Nasal Fricative Lateral
approx.

Lateral
frica-
tive

Trill

Place of Production

V
oi
ce
d

U
nv
oi
ce
d

V
oi
ce
d

U
nv
oi
ce
d

V
oi
ce
d

U
nv
oi
ce
d

V
oi
ce
d

U
nv
oi
ce
d

V
oi
ce
d

U
nv
oi
ce
d

V
oi
ce
d

U
nv
oi
ce
d

Bilabial b p m
Labio�dental v f

Dental / Alveolar d t n z sz l dz c r
Dental / Postalveolar zs s dzs cs

Palatal gy ty ny j
Velar g k
Glottal h

conversion of phonetic categories into numerical values requires an expert of linguistics.

Next it is assumed that each phonetic feature is converted to real values so letters can

be modeled as real vectors.

To sum up a sound can is determined by its phonetic features. In my work following six

features and their categorical values are distinguished:

Consonants

• Way of Production

� Polsive

� Nasal

� Fricative

� Lateral approx.

� Lateral fricative

� Trill

• Place of Production

� Bilabial

� Labio�Dental

� Dental / Alveolar

� Dental / Postalveolar

� Palatal

� Velar

� Glottal

Vowels

• Position of the tongue

� Front

� Back

• Shape of the lips

� Rounded

� non�rounded

• Pitch

� Close

� Mid

� Open

Chapter 3. Complexity Analysis of the In�ection Induction Problem 25

• Voice

� Voiced

� Unvoiced

3.3 Vector Space Representation

Letters can be identi�ed by their phonetic features so they can be assigned to tuples

of phonetic features. Both vowels and consonants are de�ned by di�erent three�three

features, so any letter can be represented in a six dimensional space. Because the phonetic

features are converted to real values, this space is a vector space, l ∈ R6 where l stands for

a letter. If a letter does not have a given feature then its value is 0 in the corresponding

dimension. There are many di�erent method in the literature to handle data in vector

space.

To de�ne the similarities between the letters, their distances can be calculated in Eu-

clidean space. The distance of a letter pair can be calculated as d(li, lj) =
√∑

k(li,k − lj,k)2

where li,k denotes the kth feature of the li word. The distance is smaller for similar let-

ters. Although in mathematics an alphabet is a set of letters, in traditional alphabets

the positions are well�de�ned and �xed. To create an phonetic features based traditional

alphabet the letters have to be mapped into a one dimensional space where each letter

has a corresponding one dimensional point and the distances of the original and the

mapped points remains similar. The dimensionality reduction usually yields errors in

the distance ration of the resulted point set.

Figure 3.9 shows a mapping of a two dimensional space into a one dimensional. The

points in the two dimensional space are A, B,, C and D, E and their images in the one

dimensional space are A, B, C ′, D′ and E′. Because A and B points are on the X axis

and the point are projected into the X axis they are their own images. The C ′ point

splits the AB into two parts AC ′ and BC ′ which pairs length is proportional with the

length of AC and BC. It can be seen in the ABD and ABE triangles too. In the case of

C D and E point the distances of their images are not proportional with the distances

of original points. It can be seen the distance of DE and D′E′ remained but the C ′D′

and C ′E′ distances are got shorter. So the dimensionality reduction usually yields error.

There are many di�erent methods in the literature [Fod02] to map a n dimensional

vector space into a m dimensional where n ≥ m. The Principal Component Analysis

[Jol05, WEG87] and the Multidimensional Scaling [Kru64] are classical dimensionality

reduction techniques. There are application speci�c researches on the methods of dimen-

sionality reduction techniques [KHP05]. There are also recent results on the non�linear

Chapter 3. Complexity Analysis of the In�ection Induction Problem 26

Figure 3.9: Dimensionality reduction

dimensionality reduction [TDSL00]. To create the phonetic alphabet we used the Princi-

pal Component Analysis because it is a classical, well�studied and widely used technique.

3.3.1 Dimension Reduction based on Principal Component Analysis

Principal Component Analysis is based on the eigenvalue decomposition of the covariance

matrix of the samples. The objects have to be represented in a vector space and each

feature has to be numerical. Hence the dataset can be converted into a real matrix. Let

L denote the matrix which represents the dataset of the letters. Its size is determined

by the number of the letters in the alphabet and the number of the phonetic features,

L ∈ R44×6 for the Hungarian language.

The covariance measures how two random variables change together. The sign of the

covariance shows the tendency in the linear relationship. The value of the covariance is

not so easy to interpret. If it is zero, then the two random variables are independent. In

statistics its normalized version, the correlation is used often. The covariance is de�ned

in equation 3.6 where X and Y are the random variables and E(X) denotes the expected

values of X. Based on the de�nition cov(X,X) = σ2(X) where σ(X) is the variance

of X. The empirical covariance can be calculated with the equation 3.7 where x is the

average of X and y is the average of Y .

cov(X,Y) = E(E(x− E(X))E(y − E(y))) (3.6)

cov(X,Y) =
n∑

i=1

(xi − x)(yi − y) (3.7)

Chapter 3. Complexity Analysis of the In�ection Induction Problem 27

Covariances between n random variable can be organized into a n × n matrix form.

Covariance matrix Σ is a symmetric square matrix where each the rows and columns

denote features in a �x order. Equation 3.8 shows the structure of an arbitrary covariance

matrix, where fi stands for the ith random variable.

Σ =


cov(f1, f1) cov(f1, f2) . . . cov(f1, fn)

cov(f2, f1) cov(f2, f2) . . . cov(f2, fn)
...

...
. . .

...

cov(fn, f1) cov(fn, f2) . . . cov(fn, fn)

 (3.8)

Eigenvalues v and eigenvectors λ of a covariance matrix can be determined. The eigen-

value and the eigenvector satisfy the Σv = λv equation. This equation can be trans-

formed into a linear equation system (Σ− λI)v = 0. The equation system has multiple

solution and each solution gives an eigenvalue Let V denote a column vector of eigenvec-

tors V = [v1,v2, . . . ,vn]T where vi is the ith eigenvector. And Λ stands for the column

vector of eigenvalues Λ = [λ1, λ2, . . . , λn]T where λi is the ith eigenvalue. The most

signi�cant eigenvector has the highest corresponding eigenvalue so the eigenvectors are

ordered by their eigenvalues. It means the point spread across this vector in a biggest

range. The higher eigenvector means higher spread across the corresponding eigenvector.

Figure 3.10 shows principal components of a dataset.

Figure 3.10: Principal Component Analysis Example [Wik14]

Chapter 3. Complexity Analysis of the In�ection Induction Problem 28

To reduce the dimensionality of the dataset the eigenvectors with less eigenvalue can be

omitted. The reduced matrix of eigenvectors is denoted by V′ and Λ′ stands for the

reduced vector of eigenvalues. This omission yields error in the reduced dataset as it was

shown above, but this error is minimized in principal component analysis. Because the

goal is to de�ne a phonetic features based traditional alphabet every eigenvector except

the most signi�cant are omitted. In other words only the most signi�cant eigenvector is

used to create the phonetic alphabet.

The reduced dataset Lr is yielded by a linear transformation and a transposition. The

chosen eigenvectors are ordered by their eigenvalue gives the �rst component of the

product V′. The second component L∗is the mean�adjusted and transposed dataset i.e.

L∗ = (L− [L(:,1),L(:,2), . . . ,L(:,m)])
T where L(:,i) denotes the average of the ith column

or feature of dataset L and the [L(:,1),L(:,2), . . . ,L(:,m)] vector has as many rows as L.

The result of the multiplication contains the objects in the columns and the features are

encoded by the rows. It can be transposed in order to bring the objects into the original

format. Formally the reduced dataset is given as Lr = (V′ × L∗)T and its size if n×m′

where m′ ≤ m is the number of the chosen eigenvectors.

3.4 Generation of Phonetic Alphabet

A MatLab application was developed to create phonetic features based alphabet for

Hungarian. Appendix B details how the source code can be obtained. MatLab supports

to perform matrix operation on complex n dimensional matrices. We used the neural

networks toolbox to show the proposed phonetic alphabet based encoding is superior

the standard alphabet based one. Moreover MatLab as a programming language allows

to create graphical user interface for applications which can use the MatLab functions.

With its built�in graphical user interface editor it is easy to create simple applications

for data processing or other purposes.

Figure 3.11: User Interface of the developed MatLab Application for Hungarian

Chapter 3. Complexity Analysis of the In�ection Induction Problem 29

The user interface of the developed application is shown in Figure 3.11 (and Appendix

A). It consists of four parts. In the �rst part the user can de�ne the numerical values for

the features of the vowels. The features of the consonants can be mapped into numerical

values in the second part of the user interface. The weights of the di�erent features and

the buttons are placed in the third part. The weights allows to set the relative signi�cance

of the features. If a feature has a greater weight then it is more important. The program

allows to turn o� the weights in this case the features have the same weight. It also

supports the normalization of the features. Finally the fourth part of the user interface

shows a table which contains the distance matrix of the letters. Its value is computed

based on the parameters set in the �rst and second panel. The yielded alphabet can be

visualized in chart which is shown in a separate window (See Figure 3.12).

Figure 3.12: Phonetic features based Hungarian alphabet

The above detailed method to generate phonetic features based alphabet was tested

with a di�erent parameters. To generate this phonetic alphabet, the categories of the

di�erent features were encoded by their indexes in the textbook [Zsu97]. The weights of

the features were set to 1 for each feature and the category values were normalized.

The generated alphabet is visualized in Figure 3.12 and the numeric values of the letters

are in Table 3.3. The numerical values in the Table were limited to four digits, but the

MatLab stored their values more precisely.

Six clusters of similar letters can be identi�ed in Figure 3.12. The �rst cluster contains

the vowels. The vowel o and ó has the same value in Table 3.3 their values but di�erence

is too small to visualize. The w, q, ly, y, x letters belong to the second cluster and

have the same numerical value. Its reason is that the phonetic features were not de�ned

[ASA01, Zsu97] so their feature vectors were chosen to equally zero. The third cluster

Chapter 3. Complexity Analysis of the In�ection Induction Problem 30

Table 3.3: Generated Phonetic Alphabet

Letter Value Letter Value Letter Value Letter Value Letter Value
á -3.6677 i -2.9822 p -0.4340 l 2.3863 r 3.4672
a -3.4845 í -2.9822 m -0.1346 ty 2.4458 dzs 3.6467
e -3.4746 ü -2.7990 d 0.7649 zs 2.5658 cs 3.8877
o -3.2384 ¶ -2.7990 t 1.0059 ny 2.7453 h 4.9666
ó -3.2384 ly -2.1764 v 1.1258 s 2.8068
é -3.2284 q -2.1764 n 1.3053 g 2.9248
ö -3.0452 w -2.1764 f 1.3668 dz 2.9267
® -3.0452 x -2.1764 z 1.8458 k 3.1658
u -2.9922 y -2.1764 sz 2.0868 c 3.1677
ú -2.9922 b -0.6750 gy 2.2.048 j 3.2857

contains the b, p and m letters which are Bilabials moreover (b,p) is a voiced�unvoiced

pair. The d, v, f, n and t belong to the fourth cluster. These letters are both Labio�

dental or Dental words and in addition (d,t) and (v,f) are also voiced�unvoiced pairs.

The �fth cluster is the biggest and it the dental letter are placed in the lower part, the

palatal letters are in the middle and velar letters are on the upper part of the cluster.

Finally the last cluster contains only the h letter which is the only glottal letter in the

Hungarian alphabet.

The clusters and the distances of the letters shows that the similar ones are close together

in the yielded alphabet. This property can improve the fault tolerance of systems. For

example the u and ú letters are mapped into the same numerical value based on Table

3.3 and they has the same pronunciation in the word "áru" and "kúp".

However the resulted alphabet has many advantages compared with the traditional one,

but there are still some errors. For example the letter s and g are close together in the

alphabet, but they have no common phonetic feature. Moreover the letters w, q, ly, y, x

were mapped without the proper de�nition of the phonetic features. On the other hand

the letters w, q, y, x do not occur in Hungarian words except names or foreign words and

the letter ly denotes the same sound as j.

3.5 Linear Separability of In�ection Rules in Hungarian

In�ection can be considered as a string transformation which describes how can a word

converted into its in�ected form. These transformation can be encoded by a transforma-

tional string which describes the transformation. Transformation string can be derived

from the stem � in�ected form pairs. A category of words is de�ned by each transforma-

tion string.

Chapter 3. Complexity Analysis of the In�ection Induction Problem 31

Classi�cation is a process which decides that a given object in which prede�ned class

belongs to. Most of the classi�cation algorithms require vector space representation of

the objects. There can be a cluster of objects de�ned for each category. A cluster is the

smallest convex hull in the space which contains each point of given category . These

clusters can be disjoint or overlapped. E�cient and accurate classi�cation algorithms

can be created if each clusters are disjoint. If two clusters are disjoint, than they are

linear separable.

Testing of linear separability based on linear programming is reviewed [Eli06]. The

optimization task is formalized from the X1 and X2 clusters of the objects. The time

cost of the method was evaluated on generated data set. Measurements showed that the

time cost grows polynomially with the number of points.

3.5.1 Linear Separability of In�ection

Linear separability in in�ection was tested with alphabetical and phonetic encoding. The

vectors were expanded to length of the longest word which has 22 characters. With both

encoding we used left and right adjust to create the real vector. Left adjust means the

vector starts with the numeric representation of the word. In the case of right adjust,

the vector ends with the numeric values. Empty characters were represented by zeros.

The input contained about 54.000 word pairs which can be categorized into about 160

di�erent categories in both encoding. Approximately 98% of the training set belongs to

one of the largest 15 clusters. Thus there are a few large classes and lot of small ones.

From the point of view of time cost it means some of testing could require hours or days

while others only seconds.

The maximum size of a cluster were limited to 2000 samples in order to reduce the time

cost of the testing. As it is shown above the time cost of the applied simplex method

grows polynomially with the number of the points.

The clusters which are smaller than the limit were unchanged. The bigger clusters were

reduced by the omission of the elements. The elements were ordered by their base words,

then 2000 elements were chosen equidistantly based on their indexes. Due to the ordering,

if an element is omitted, then there can be a similar one in the reduced cluster.

The omission a�ects on the results too because it could yield false positive tests. Two

clusters can become linear separable by the omission of the overlapping points. Hence

the true test results can be false positives. This omission has no e�ect on the false test

because if two clusters are not linear separable, then the will not become linear separable

Chapter 3. Complexity Analysis of the In�ection Induction Problem 32

by adding new points to one of the clusters i.e. there are no false negative tests. This

trade�o� was necessary due to the huge time cost of the testing algorithm.

Table 3.4 shows the how many non linear separable cluster pairs are in the tested cases.

The encodings are stored in the columns. The �rst row shows how many linear non

separable cluster pairs were found during the test. The second row shows the ratio of

the non separable cluster pairs with the total number of cluster pairs. It can be seen

that less non separable cluster pairs were found in the case of Phonetic alphabet than in

the case of Alphabetical encoding. And there are about twice as mans as non separable

cluster pairs with right encoding than with left encoding.

Table 3.4: Linear Separability Ratio of Tested Representation for Hungarian Ac-
cusative Case

Encoding Alphabetical Phonetic
Adjustment Left Right Left Right
Non Separable 405 972 350 853
Ratio 3.0675% 7.3620% 2.6509% 6.4607%

3.5.1.1 Visualization

There were about 160 categories in both encoding so the results are visualized in an

bitmap image. The categories de�ne the size of the image. A white dots stand for a

separable cluster pair and a black dots denote a non separable ones. One cluster cannot

be separated from itself, thus if each cluster are separable from other then there is only a

black diagonal line in the white square. Because the separability is symmetric, the dots

are also symmetric onto the diagonal.

The result bitmap images are in Figure 3.13. Figure 3.13a shows that there are a few

non linear separable clusters in the case of alphabetical encoding and left adjust. Using

same encoding with right adjust, there are more non linear separable clusters which can

be seen in Figure 3.13b. The results of the phonetic encoding are shown in Figure 3.13c

and Figure 3.13d. Left adjust yielded more separable classes in the current training set,

than the right adjust. Figures shows also that, there are more separable clusters with

phonetic encoding with left adjust than in the case of alphabetical representation. On

the other hand the worst case was given by phonetic encoding with right adjust.

3.6 Conclusions

To sum up, a method has been presented to generate phonetic features based alphabet

which maps the letters into real values. Although this representation is one dimensional,

Chapter 3. Complexity Analysis of the In�ection Induction Problem 33

(a) Alphabetical encoding � Left (b) Alphabetical encoding � Right

(c) Phonetic encoding � Left (d) Phonetic encoding � Right

Figure 3.13: Linear Separability with Alphabetical and Phonetic encoding

it is similar to the traditional alphabet because it de�nes an ordering and the distances

of the letters represent their phonetic similarities. There are clusters of similar letters in

the yielded alphabet which con�rms that the phonetic alphabet ful�lls its initial goals.

Linear separability is an important property of clusters which allows to create e�cient

classi�cation methods. Traditional and phonetic alphabets were used to encode a training

set of about 56,000 samples stem � accusative case word pairs in Hungarian. Category

keys were determined by Levenshtien distance of the words. The linear separability

testing method has O(dp2) time cost where d denote the number of the letters in the

longest word and p stands for the size of the clusters. Although phonetic alphabet shown

superior to the traditional alphabet in experimental results, the experiment showed that

there are non linear separable cluster pairs with both tested representations.

Chapter 3. Complexity Analysis of the In�ection Induction Problem 34

Thesis 1.

I have measured the complexity of in�ection rules induction by the ration of the linear

separable clusters pairs in the vector space. I have introduced a methods to create phonetic

features based alphabet. The created phonetic alphabet based encoding was shown superior

to traditional alphabet based encoding.

Related Publications: [8], [9]

Chapter 4

Induction of In�ection Rules with

Classi�cation and Associative

Memory

In�ection is a vital element to express semantic in synthetic languages. Proper in�ection

is crucial for text generation and reporting systems. The induction of in�ection rules

is an open question in computational linguistics. The existing solutions use dictionary,

transformation rules or statistical observations to in�ect a stem. These methods have

drawbacks either in precision and cost e�ciency. A novel in�ection method, called AMC,

has been developed which is based on classi�cation and associative memory. The words

which belong to non-frequent categories are stored in the associative memory thus the

classi�cation process can be performed faster. The transformations for the regular words

are determined by the classi�er. Precision, size and time cost of the algorithm are mea-

sured with di�erent sized associative memory. The precision of the proposed algorithm

can exceed the 90 per cent based on the experimental results. The AMC method is

compared with standard classi�cation based in�ection methods.

4.1 Computational Morphology

Computational Linguistics aims at capturing the aspects of the natural languages by

rule-based and statistical models. Computational linguistics provides solution for var-

ious tasks such as morphological analysis, stemming or in�ection. The algorithms of

computational linguistics are widely used in Natural Language Processing solutions. For

example stemmers and morphological analyzers are used in information retrieval systems.

35

Chapter 4. Induction of In�ection Rules with Classi�cation and Associative Memory 36

Algorithms on in�ection are used in text generation and machine translation applications,

too.

The �rst systems were focusing on simpler morphological problems. For example, the

in�ection of the past tense of English was analyzed in [Pin91]. It is assumed that there

are di�erent modules in human mind which are responsible for the in�ection. There is a

rule based process to in�ect the regular verbs which allow the in�ection of even unknown

words. But its drawback is the over regularization which transforms irregular verbs into

incorrect form. For example children make grammatical errors when they say �comed� or

�breaked� [Mar96]. The learning of irregular verbs is similar to an associative memory.

On the other hand there can be similarities found between irregular verbs which lead to

the theory of rule-associative-memory.

In�ection is the inverse function of stemming which is well-studied in text mining. Stem-

ming algorithms are based on various approaches such as dictionary, rules or statistics.

Although dictionary based methods provide the highest accuracy, they cannot generalize

nor handle untrained words. Moreover the building of the dictionary is costly, time-

consuming and requires language experts. Rule based stemming methods has a trade-o�

between accuracy and cost. The Porter stemmer is one of the most popular rule based

stemming algorithms [Por80, Por01]. Statistical methods requires no language experts,

but they can have a low accuracy. An unsupervised statistical stemming method is

presented in [GAH04] which transforms the induction task into an optimization task.

Although it has promising results for fusional languages, it was not tested with aggluti-

native languages which have more su�xes and more complex in�ection rules.

SMOR is a morphological analyzer [SFH04] for German in�ection rules based on Finite

State Transducers. Stochastic transducers are also used to learn morphology [Cla02].

The rules were implemented in Stuttgart Finite State Transducer tools and SMOR uses

a lexicon which only stores the properties of the stems. SMOR has rules for pre�x,

su�xes, derivation, composition and in�ection. In the experiments the precision of the

SMOR were above 95 per cent in general and the precision depends on the frequency of

the word.

Bayesian approach was used to perform morphological analysis in [NG09]. It assumes

that the spelling rules occur at the end of the word. The P (c, t, f, y, r | w) model is

used to de�ne the stem for the word where w is the word, c is the class of the word, t

is the stem, f is the su�x, y is the type of the spelling rule and r is the transformation.

During the inference a standard Markov Chain Monte Carlo technique was used. Their

experiments showed that the accuracy of the stem and su�x recognition depends on

the context. The accuracy of stem recognition is about 65 per cent and the accuracy

of su�x recognition is about 78 per cent. Although this method is no as precise as the

Chapter 4. Induction of In�ection Rules with Classi�cation and Associative Memory 37

above mentioned rule based algorithms, it does not require human experts and a priori

knowledge about the grammatical rules of the language.

The endings of the words are considered as classes in [MLCL04] because the language

learners often learn induction tables where a cell denotes an in�ection class. Based on

their endings the words are organized into candidate in�ection classes. These classes can

be organized into a lattice. The authors tested �ve di�erent reduction algorithms from

the point of view of precision and recall. The tests were evaluated with both English

and Spanish languages.

4.1.1 Hungarian Solutions

Although most of the researches are focused on English or other major language, there are

solutions for languages with only a few million native speakers such as Hungarian. The

�Szószablya� project [RG06, HKN+04] provides a morphological analyzer for Hungarian.

The KOPI is a plagiarism [Pat06a, Pat06b] checker developed by the Hungarian Academy

of Sciences. These projects are focused on the information extraction.

Text generation is another branch of natural language processing which aims to generate

natural language texts such as reports or questions. For Hungarian, László Bednarik

created a system to generate questions for exam from annotated text [Bed12].

4.2 Dataset

The induction of the in�ection rules for the accusative case of Hungarian was tested based

on a training set of 54.000 (stem,in�ected form) pairs. The training set contains almost

every Hungarian noun and the in�ection was made by native speakers. The training

set was converted into an structure which contains a category key and a numeric array

for each pairs. The e�ciency of the classi�cation depends among others on the repre-

sentation of the items. According to our previous investigations on the di�erent word

representation methods [8, 9], the phonetic alphabet representation method is superior

to the standard methods which are usually based on the external parameters of the ob-

jects. Phonetic alphabet considers the phonetic features of the sounds, denoted by the

letters. The letters can be mapped into real values based on the phonetic alphabet and

the letter with similar sound will be closer together than di�erent letters. Due to the

di�erent length of the words the shorter words was augmented by spaces to the length

of the longest word so each word had the same length. These words was converted to

real vectors by the substitution of the letter with real values. The test measure the time

Chapter 4. Induction of In�ection Rules with Classi�cation and Associative Memory 38

cost of the learning, the precision and the serialized size of the classi�er structure. These

parameters usually depend on the size of the training set.

4.2.1 Categories

The categories are denoted by the transformation string which is determined based on the

stem, in�ected form pair. Thus each category denotes an in�ection rule. Our preliminary

assumption is that there are only a few or maybe a dozen in�ection rules for a case. The

experimental results shows that there are approximately 160 categories in the training

set. On the other hand most of the words belong to on of the the big classes. Hence the

high number of the categories can be explained with the irregular words.

4.2.1.1 Transformation String

The transformation rule can be characterized by the corresponding string edit distance

which measures the minimum cost of the transformation which transforms a string into

another form. Calculation of the Levenshtein distance [Lev66, Nav01] is based on dy-

namic programming. The insertion, deletion, and substitution costs are parameters of

the algorithm. These values were set to 1 in the current tests and in the example shown

in Table 4.1 which shows the matrix created to determine the Levenshtein distance of

"alma" and "almát" words. The result is 2 because it requires a substitution and an

insertion to transform the base word "alma" into its in�ected form "almát". The bold

numbers in the table show minimum path which determines the transformation.

Table 4.1: Levenshtein distance of "alma" and "almát" words

* a l m á t
* 0 1 2 3 4 5
a 1 0 1 2 3 4
l 2 1 0 1 2 3
m 3 2 1 0 1 2
a 4 3 2 1 1 2

The optimum transformation path is encoded by the transformation string which is built

from the following symbols:

* no transformation, multiple times

- empty character

(transformation starts

Chapter 4. Induction of In�ection Rules with Classi�cation and Associative Memory 39

/ transformation separator

) transformation ends

Based on this encoding the ***(a/á)(-/t) transformation string can be read from Table

4.1. In order to be independent from the invariant parts of the words, sequence of *

symbol is replaced with a single *. This generalized transformation strings were used as

category identi�ers.

4.2.1.2 Evaluation of Problem Domain

Approximately 160 categories were distinguished based on the transformation string. In

spite of the great number of the categories, only a few category contains many word pairs

and most of the categories describe a special case. It shows that there is a general rule

of the in�ection of accusative case in Hungarian, there are a few exception and there are

many irregular words. This results con�rm our preliminary assumptions about the size

of the clusters and the number of the big clusters.

Table 4.2: Number of transformations in categories

Transformation # of word pairs % of training set
*(-/t) 28239 52.31
*(-/o)(-/t) 7399 13.71
*(-/e)(-/t) 6731 12.47
*(a/á)(-/t) 5975 11.07
*(-/a)(-/t) 2041 3.78
*(e/é)(-/t) 969 1.80
(é/e)(-/e)(-/t) 454 0.84
*(-/ö)(-/t) 399 0.74
(á/a)(-/a)(-/t) 191 0.35
*(o/m)(m/a)(-/t) 177 0.33
*(õ/ö)(-/v)(-/e)(-/t) 138 0.26
(ú/u)(-/a)(-/t) 123 0.23
(e/m)(m/e) 109 0.20
*(-/v)(-/e)(-/t) 96 0.18
*(¶/ü)(-/v)(-/e)(-/t) 89 0.16
Sum 53130 98.43

Table 4.2 shows the 15 largest categories and their size. The �rst column shows the

transformation rule. Next is the number of the pairs which belong to the category. Last

two columns show their integrated size which means these categories gives about 98.5%

of the training set.

Chapter 4. Induction of In�ection Rules with Classi�cation and Associative Memory 40

4.3 Standard Classi�cation Methods

Classi�cation is a process to determine the unknown category feature of instances based

on their known features. It is a widely used technique in data mining and there are nu-

merous classi�cation methods in the literature. Induction of in�ection rules is considered

as a classi�cation problem. As standard classi�ers, the following algorithms were used to

solve the classi�cation task: Naive Bayes [JL95], K* [CT+95] and Multilayer Perceptron

[Zha00]. The selected algorithms were evaluated from the point of view of precision,

learning cost and size of the classi�er structure.

Naive Bayes classi�er is considered the punching bag of the classi�ers because other

classi�cation methods are usually compared with it. It is based on the Bayes Theorem

for conditional probability of independent random variables. The independence of the

random variables is assumed in Naive Bayes classi�er, but this assumption is not ful�lled

for real problems.

K* classi�er is an instance�based learner and it uses an instance-database. Classi�cation

is based on distance calculation and minimum search in instance�based classi�ers which

is a costly task. The minimum search is a linear algorithm O(n) which could slow

the classi�cation process in the case of big training set. There are various distances

de�ned between real vectors or sets. For real vectors the Minkowsky distance is applied

usually which special cases are the Manhattan and the Euclidean distance. Own distance

function has to be de�ned for complex structures with ordinal or categorical variable

which is not an obvious task.

Arti�cial Neural Networks are considered as universal function approximation methods.

For classi�cation task the feed-forward neural networks which is called Multilayer Per-

ceptron are applied. The input of the network is the known feature and the output

denotes the category. Neural networks can handle only numerical features because it is

based on matrix operations. Thus the non numeric values have to be converted and this

conversion could require and expert. The size of the network depends on the number

and the size of the layers. The time cost of the classi�cation is considered to be constant.

4.3.1 Precision

Precision is one of the most important measures of classi�ers. It shows how many per-

centage of the items are classi�ed correctly. The following �gures show how the precision

of the di�erent algorithms depending on the size of the training set in each representation.

The X-axis shows the number of the samples and the Y-axis shows the precision.

Chapter 4. Induction of In�ection Rules with Classi�cation and Associative Memory 41

Figure 4.1 shows that the precision of the Naive Bayes classi�er decreases with then

size of the training set. The best precision is less than 30% which is a poor result.

The measurement shows that the left adjustment is superior to the right adjustment.

This phenomena can be explained with the properties the in�ection of accusative case

in Hungarian.

Figure 4.1: Precision of Naive Bayes Classi�er

Figure 4.2 shows the precision of the K* classi�cation algorithm. The precision slowly

increases with the size of the training set and it is around 70%. This phenomena can

be explained with that there are only few exceptions in the training set and most of the

words belong to one of the few big categories. It also shows that the left adjustment is

superior to the right one and the alphabetical encoding suits better for this algorithm.

Figure 4.2: Precision of K* Classi�er

Figure 4.3 shows how the precision of the Multilayer Perceptron classi�er with di�erent

hidden layers. The size of the hidden layers are 2, 4, 6 in Figure 4.3a, 5, 10 in Figure 4.3b

and 5, 7, 10 in Figure 4.3c (see Appendix A for enlarged �gures). The left adjustment was

also shown superior in the measurements. The precision of the neural network is around

Chapter 4. Induction of In�ection Rules with Classi�cation and Associative Memory 42

70% so the Multilayer Perceptron classi�er is considered as precise as the K* classi�er.

In the measurements, the phonetic encoding was found better for neural network.

(a) [2, 4, 6] (b) [5, 10] (c) [5, 7, 10]

Figure 4.3: Precision of Multilayer Perceptron Classi�er with di�erent hidden layers

4.3.2 Learning Cost

Applicability of classi�cation methods for real life applications is limited by their huge

training costs. Natural languages have tens of thousands of base words and these words

can have multiple in�ected forms, so training sets can be of very huge size. The size of

the training set is shown on the X�axis and the Y�axis shows the cost in millisecond.

Figure 4.4 shows how the learning cost of the tested classi�ers depends on the size of

the training set. The enlarged version of these �gures can be found in Appendix A. Our

experiences show that the learning costs of the tested algorithms grow linear with the

size of the training set. The learning cost Naive Bayes and the K* algorithm is similar.

The Multilayer Perceptron has the most signi�cant time cost because its training requires

approximately an hour with about 54.000 samples. Moreover the learning cost of the

Multilayer Perceptron depends on the number and the size of the hidden layers too. The

conclusion of these measurement is that the learning cost is not a signi�cant limit of

these classi�ers.

(a) Naive Bayes (b) K* (c) Multilayer Perceptron

Figure 4.4: Learning Cost of the Tested Classi�ers

4.3.3 Size of the Classi�er Structure

The size of the classi�er structure is crucial from the point of performance. If the classi�er

�ts in the memory it can work fast, otherwise the classi�cation requires more memory

Chapter 4. Induction of In�ection Rules with Classi�cation and Associative Memory 43

swapping which decreases the e�ciency. Figure 4.5 shows how the size of the classier

objects depends on the size of the training set. The X�axis shows the size of the training

set and the Y�axis shows the size of the serialized classi�er object in bytes. Naive Bayes

and Multilayer Perceptron classi�ers have similar size which is between 100 and 300 MB.

The size of the K* algorithm grows linear with the number of the samples because it

stores the instance�database. The size increased from 1GB to 10GB. This huge size of

the classi�er limits the usage of this method.

(a) Naive Bayes (b) K* (c) Multilayer Perceptron

Figure 4.5: Size of the Tested Classi�ers

4.3.4 Evaluation

Experimental results showed that the left adjustment in the encoding is superior to the

right one. From the point of view of precisions the Naive Bayes classi�er had poor results

and the K* and the Multilayer Perceptron has similar performance. The phonetic encod-

ing suits better for Naive Bayes and Multilayer Perceptron classi�ers and the alphabetical

encoding was better for K* classi�er. The learning cost increased linearly with the size

of the training set. Although the Multilayer Perceptron had signi�cant learning cost,

it has no signi�cant e�ect on its usability for the learning of in�ection rules. The size

of the classi�er objects was constant for the Naive Bayes and the Multilayer Perceptron

classi�ers, but the size of the K* classi�er grows linearly with the size of the training set.

Hence the usage of the K* algorithm has signi�cant time cost for classi�cation which

limits its usability.

4.4 Proposed AMC Method

The algorithms of Computational Linguistics usually have a common model which can

be seen in Figure 4.6. Morphological analyzers, stemmers and in�ection systems usually

have two core parts. It contains an engine to perform the transformation on the input

word and to produce the output word. The engine has no direct knowledge about the

language. The morphological rules are stored in a separate rule set. The structure of the

rule set depends on the in�ection algorithm. For example Snowball [Por01] is a language

Chapter 4. Induction of In�ection Rules with Classi�cation and Associative Memory 44

to describe stemming rules for Porter stemmer [Por80]. Rules of the SMOR [SFH04]

morphological analyzer are given by the Stuttgart Finite State Tools and the engine is

realized as Finite State Transducer. Classi�cation based in�ection algorithms can use

the category to encode the transformation.

Figure 4.6: Common Model of In�ection Algorithms

The model of the presented in�ection algorithm is showed in Figure 4.7. The implemented

rule set consists of two parts: an associative memory and a classi�er. The associative

memory stores the transformation rules of irregular words. A word transformation class

is considered as irregular, if there are only few words belonging to that class. Formally

the t = {w} category contains irregular words if | t |≤ ε where w is a word which belongs

to class t and ε is a cardinality threshold. Although the associative memory can retrieve

the exact transformation string for each learned stem it cannot be used to determine the

transformation string of untrained words. The classi�er is used to capture the frequent

in�ection rules. It can perform generalization thus untrained words can be processed.

The generalization may easily fal on exception. Considering the classi�er systems, they

have lower precision than associative memory and the precision usually depends on the

training set too. Secondly it has a more di�cult learning algorithm which acquires a

signi�cant additional learning time cost. In some cases, the classi�cation also can have a

signi�cant time cost for each word. The instance based classi�ers such as k-NN classi�er

[CMBT] determines the k most similar object to the classi�ed instance from an instance

database. The distance calculation and the search also can be costly thus the in�ection

algorithm can be slow.

The rule set determines the behavior of the in�ection algorithm so the precision of the

algorithm depends on the rule set. During the learning process the rules set is de�ned

as pairs of stem and in�ected form. Transformation string can be determined for each

word pairs with the Levenshtein distance algorithm [Nav01]. The transformation strings

Chapter 4. Induction of In�ection Rules with Classi�cation and Associative Memory 45

Figure 4.7: Model of the presented In�ection Algorithm

are considered as categories of stems. Naive Bayes [JL95] and Multilayer Perceptron

[JMM96] classi�ers were used to solve this classi�cation problem.

The representation form of the words a�ects the e�ciency of the classi�cation process,

too. The words are usually converted into real vectors by mapping the letters into

real values. This mapping can be based on code tables such as ASCII or traditional

alphabet. These mappings have numerous drawbacks. For example the distance of the

letters is constant and the phonetic features of the letters are not considered. A phonetic

features based alphabet was presented in [8] for Hungarian. The phonetic alphabet based

encoding was shown superior to the traditional alphabet and the ASCII code table based

encodings. Phonetic and traditional alphabet based encoding were used during the tests.

The presented in�ection algorithm uses both classi�er and an associative memory to learn

in�ection rules. Regular words are classi�ed by the classi�er and the irregular words are

stored in the associative memory. The size of the associative memory is a parameter of

the method. The algorithm looks for the word in the associative memory. If the word is

not found, then the transformation string is determined by the classi�er.

The learning phase has two main steps. In the �rst step the categories are ordered by

their size. Then the associative memory is populated with the irregular words. If a word

is put into the associative memory, then it is also removed from the training set. The

population of the associative memory is based on a greedy approach i.e. if the size of

the associative memory is bigger than the training set, then the training set is put into

Chapter 4. Induction of In�ection Rules with Classi�cation and Associative Memory 46

the associative memory. Then in the second step, the classi�er is built based on the rest

of the training set. This training depends on the chosen classi�cation method.

The presented method is evaluated from the point of the view of precision, size and time

cost. The precision is the ratio of the correctly in�ected words and the total number

of the words. The size of the rule set is measured with the length of the serialized

classi�er structure. Finally the time cost is measured as the required time for learning in

milliseconds. The method was evaluated with alphabetical and phonetic alphabet based

letter encodings and Naive Bayes and Multi-Layer Perceptron classi�ers and di�erent

sizes for the associative memory.

4.5 Experimental Results

The experimental measurements were implemented on a training set of 54,000 pairs

(stem, in�ected word) of the accusative case of Hungarian. The in�ection algorithm was

implemented as a module of the META framework in Java. Alphabetical and phonetic

encodings were used in the tests. The Weka data mining and machine learning framework

was used for classi�cation. Naive Bayes and Multilayer Perceptron classi�ers were used

to learn the in�ection rules. In the learning phase, the 75, 90 and 100 percent of the

training set was used to train the algorithm. But the entire training set was used during

the testing. Thus the behavior of the algorithm with untrained input can be examined.

The measurements were done with both �xed and relative associative memory sizes. The

�x measurements were done with small associative memory sizes because it was assumed

that there are only a few irregular words. The relative sizes were set to every 10 per cent

of the size of the training set.

Hungarian is an agglutinative language where are more than 17 cases of words [Mor03].

Only the in�ection of the accusative case of the singular nouns was used in the tests. On

the other hand in�ection can be also applied on an in�ected word with some restrictions

thus the grammar allows chain of in�ections.

4.5.1 Precision

Figure 4.8 and Figure 4.9 show how the precision changes in the function of the size of

the associative memory with alphabetical and phonetic alphabet based encodings with

Naive Bayes classi�er. The X axis shows the size of the associative memory and the Y

axis shows the precision. If the size of the associative memory is zero then the algorithm

uses only the classi�er to determine the transformation strings. In this case the precision

Chapter 4. Induction of In�ection Rules with Classi�cation and Associative Memory 47

of the algorithm is equivalent with the precision of the classi�er. The precision of the

algorithm increases with the size of the associative memory. The precision reaches the

top around 20.000 which is approximately the 40 per cent of the whole training set. The

precision has a break down when the entire training set �ts into the associative memory.

It can be explained with that in this case the algorithm do not use the classi�er so that

it cannot generalize. In these case the precision is the ratio of the training set and the

validating set.

Figure 4.8: Precision with Naive Bayes Classi�er and Alphabetical Encoding

The precision increases more quickly with the reduced training sets in the cases of both

encodings. Although the precision is peak at the same level with both alphabetical and

phonetic encodings, the precision increases more quickly with phonetic encoding. This

phenomena can be explained with the learning algorithm of the classi�er. Because the

irregular cases are placed in the associative memory, the number of the categories is

reduced. If a category, which is not linear separable from other clusters, is put into the

associative memory, then the number of the linear non separable cluster pairs decreases.

Hence the usage of the associative memory can reduce the number of the linear non

separable cluster pairs. This reduction could yield the increase of the precision of the

in�ection algorithm.

Multilayer Perceptron shows better precision than Naive Bayes classi�er even without

associative memory. In this case the precision increases steadily and tops around 20.000

similar to the Naive Bayes classi�er. Figure 4.10 shows how the precision depends on the

size of the associative memory in the case of the Multilayer Perceptron with alphabetical

encoding. Figure 4.11 shows how the precision changes with the size of the associative

Chapter 4. Induction of In�ection Rules with Classi�cation and Associative Memory 48

Figure 4.9: Precision with Naive Bayes Classi�er and Phonetic Encoding

memory in the case of phonetic encoding. In this case, regarding the Multilayer Percep-

tron classi�er there is no signi�cant di�erence between the two encoding unlike with the

Naive Bayes classi�er.

Figure 4.10: Precision with Multilayer Perceptron Classi�er and Alphabetical En-
coding

4.5.2 Size of the data structure

The size of the learning algorithm was measured as the size of the serialized classi�cation

structure in bytes. The serialization was possible with the Java API because the Classi�er

class of Weka implements the Serializable interface. Because the Naive Bayes and the

Chapter 4. Induction of In�ection Rules with Classi�cation and Associative Memory 49

Figure 4.11: Precision with Multilayer Perceptron Classi�er and Phonetic Encoding

Multilayer Perceptron classi�ers had similar behavior with both encodings. Figure 4.12

shows how the size of the algorithm depends on the size of the associative memory. The

measurements showed that the size of the classi�er has no signi�cant e�ect on the size

of the in�ecting algorithm. The X axis shows the size of the associative memory and the

Y axis shows the size of the serialized object of the algorithm in bytes.

Figure 4.12: Size of the data structure for the in�ection algorithm

The size of the algorithm decreases quickly until approximately 1000 then it starts to

increase steadily. The size increases linearly because the size of the associative memory

also increases linearly. So linear connection between the size of the algorithm and the

size of the associative memory can be assumed. Figure 4.13 shows how the size of the

Chapter 4. Induction of In�ection Rules with Classi�cation and Associative Memory 50

algorithm changes between 0 and 3000. It shows that the size drops until about 200 then

it has a minimum between 500 and 1000. Finally it starts to increase. The simpli�cation

of the classi�cation method can be the reason of this fall. Because the least frequent

category is put into the associative memory �rst, many of the categories can be eliminated

from the training set even with a small associative memory. This elimination yields a

simpli�ed classi�er which requires less memory.

Figure 4.13: Size of the data structure for the in�ection algorithm

4.5.3 Time Cost

The time cost of the algorithm is the time which is require for training. Although this cost

occurs only in the learning phase it makes the tuning of the algorithm slower. Moreover

the learning cost can limit the applicability of the algorithm if it is too high. For example

if the time cost would grow exponential with the number of samples then it could be

applied with only small training sets.

The measurements showed that the learning cost of the algorithm signi�cantly depends

on the classi�er. Figure 4.14 shows how the learning cost decreases with the increase the

size of the associative memory. It also shows a short transient phase up to 3.000. Then

it decreases steadily and there is a fall around 20.000.

Figure 4.15 shows the time cost in the case of the Multilayer Perceptron classi�er. Al-

though the training cost of the neural network is much more higher than the Bayesian

classi�er the time cost function is similar. The time cost can be reduced with the appli-

cation of a small associative memory. Then it decreases slowly and it also has a break

down around 20.000.

Chapter 4. Induction of In�ection Rules with Classi�cation and Associative Memory 51

Figure 4.14: Time Cost with Naive Bayes Classi�er

Figure 4.15: Time Cost with Multilayer Perceptron Classi�er

The measurements showed that the precision of the classi�cation based in�ection algo-

rithms can be increased with the usage of associative memory. But above a certain size of

associative memory the precision will not increase. Moreover if the associative memory

is too big then the precision of the algorithm can decrease.

Measurements showed that the size of the algorithm depends on the size of the associative

memory. Above a certain size of associative memory there is a linear connection between

the algorithm and the associative memory. The learning cost depends on the classi�cation

method. However the di�erent classi�cation methods had di�erent learning cost the time

cost decreased similar with both classi�ers

Chapter 4. Induction of In�ection Rules with Classi�cation and Associative Memory 52

4.6 Evaluation

The proposed AMC method has been compared with the standard classi�cation methods

from the point of view of precision, learning cost and size of the classi�cation structure.

The algorithms were implemented in Java withWeka framework. The measurements were

preformed with a training set of 54.0000 samples which contains stem and accusative case

pairs.

Table 4.3 shows the performance of the AMC and the standard methods. The experimen-

tal results of the proposed AMC method is shown with di�erent size of the associative

memory. The size of the associative memory is given as a percentage of the training

set. Due to the big di�erences the learning cost and the size are given in standard form.

The precision and the size of the classi�cation structure increase with the size of the

associative memory. On the other hand the learning cost decreases.

Table 4.3: Comparison of Standard and AMC Methods

Method Precision (%) Learning Cost (ms) Size (byte)
Standard

Naive Bayes 11.3% 5.5 ∗ 102 2.5 ∗ 105

K* 74.45% 1.6 ∗ 102 1.1 ∗ 107

MLP 68.45% 4.1 ∗ 106 1.9 ∗ 105

AMC (10%)

Naive Bayes 28.00% 1.3 ∗ 103 1.7 ∗ 105

MLP 62.34% 1.3 ∗ 105 1.8 ∗ 105

AMC (20%)

Naive Bayes 56.60% 1.2 ∗ 103 3.2 ∗ 105

MLP 73.20% 1.0 ∗ 105 3.3 ∗ 105

AMC (40%)

Naive Bayes 92.16% 1.0 ∗ 103 6.2 ∗ 105

MLP 92.32% 6.9 ∗ 104 6.3 ∗ 105

AMC (90%)

Naive Bayes 100.0% 6.2 ∗ 102 1.2 ∗ 106

MLP 100.0% 7.3 ∗ 102 1.2 ∗ 106

AMC (100%)

Naive Bayes 100.0% 6.1 ∗ 102 1.3 ∗ 106

MLP 100.0% 6.4 ∗ 102 1.4 ∗ 106

Table 4.4 shows how the precision changes with the relative size of the associative mem-

ory. Without associative memory the performance of the algorithm is determined by the

precision of the applied classi�cation method. Naive Bayes and Multilayer Perceptron

classi�ers were used during the test. The K* algorithm was omitted due to the huge size

of the classi�cation structure. Each classi�er was trained with 75%, 90% and 100% of

the training set and was validated with the entire training set. It can be seen that if

Chapter 4. Induction of In�ection Rules with Classi�cation and Associative Memory 53

the algorithm uses only associative memory, than the precision of the algorithm is equal

with the ratio of the trained samples and training set.

Table 4.4: Precision of AMC Algorithm

Classi�er Naive Bayes MLP
Associative
Memory

75% 90% 100% 75% 90% 100%

0% 0.29% 0.029% 0.31% 52.60% 52.51% 52.32%
10% 24.64% 27.41% 28.00% 59.82% 62.18% 62.34%
20% 57.76% 65.37% 56.60% 67.32% 70.32% 73.20%
30% 74.42% 78.95% 81.25% 74.82% 79.32% 82.32%
40% 82.32% 88.32% 92.16% 82.32% 88.32% 92.32%
50% 88.02% 95.17% 100% 88.03% 95.17% 100%
60% 88.02% 95.17% 100% 88.03% 95.17% 100%
70% 88.02% 95.17% 100% 88.03% 95.17% 100%
80% 88.02% 95.17% 100% 88.03% 95.17% 100%
90% 88.02% 95.17% 100% 88.03% 95.17% 100%
100% 75.00% 90.00% 100% 75.00% 90.00% 100%

The words had same weight during the testing. But the di�erent words have di�erent

frequency. Moreover the frequent words are often irregular [Pin91]. Thus the word

frequency could be used to wight the words during the testing and it could give a more

accurate results. Because the AMC method puts the irregular words into the associative

memory thus they have high precision. This testing requires further works.

Based on the results the proposed AMC methods is superior to the standard classi�cation

based methods. The size of the associative memory allows the tuning of the algorithm.

High precision could have been achieved with an associative memory which size is about

40% of the training set. On the other hand the algorithm can lose its generalization

ability, if the size of the associative memory is too big. Another advantage of the usage

of the associative memory is the drop of the learning cost which allows the application

of the method with huge training sets.

4.7 Conclusion

A novel in�ection algorithm has been presented which uses classi�cation method en-

hanced with associative memory. The method uses associative memory to learn the

irregular words and the exceptions. The classi�er is used to capture the regular trans-

formation rules. The algorithm looks for the rules �rst in the associative memory. If it

does not �nd the rule, then the classi�er is used to determine the transformation rule.

These two phases allow to achieve high precision and compact size.

Chapter 4. Induction of In�ection Rules with Classi�cation and Associative Memory 54

The experimental measurements were focused on the precision, the size of the data

structure of the algorithm and the learning cost. Results showed that precision increases

fast with the size of the associative memory. The maximum precision was achieved

with an approximately 20.000 sized associative memory, for a training set of 54.000

samples. Phonetic alphabet based encoding showed better results with Naive Bayes

classi�er and the encoding had no signi�cant e�ect on the Multilayer Perceptron classi�er.

Measurements on the size of the data structure of the algorithm showed that the size

grows linearly with the size of the associative memory and the classi�er do not modify

the size signi�cantly. Experimental results show that the learning cost of the algorithm

depends on classi�er. The learning cost decreased similarly with both tested classi�ers

although the order of the cost function was di�erent.

The presented in�ection algorithm is capable to handle irregular words and to determine

the transformation string for the regular ones with high precision. The algorithm could

achieve approximately 90 per cent precision with incomplete training sets. The presented

AMC method was compared with standard classi�cation methods and has been showed

superior. The size of the associative memory is a vital parameter of the method. The

proper chose of this parameter requires tuning or examination of the training set.

Thesis 2.

I have presented a classi�cation based in�ection method enhanced with associative mem-

ory. The algorithm has been shown superior to the standard classi�cation based in�ection

algorithms from the point of view of precision.

Related Publications: [10], [11], [12]

Chapter 5

META Framework

Rewriting systems is a mathematical formalism used to describe string transformations.

There are many di�erent rewriting systems in the literature such as L�systems [RS80],

Markov algorithm and formal grammars [Kor08]. In Natural Language Processing tasks

formal grammars are often used to model the grammatical structures of sentences so

there are many di�erent formal grammar processing algorithm in the literature [DFG11].

However these algorithms are well documented, there is a lack of their comparison and

there are implemented in various programming languages on di�erent platforms. The

META framework aims to provide the environment to implement and test grammar

and text processing algorithms. Appendix B details how the META framework and its

documentation can be obtained.

5.1 Data Mining and Text Processing Frameworks

Data mining (DM) is a process to extract hidden, non-trivial knowledge from huge data

sets. One of its special part is text mining (TM) which processes and analyzes unstruc-

tured text document sets. Natural language processing is closely related to text mining

because it can increase the performance of text mining methods, but natural language

processing is more general. Formal grammars are used in natural language processing to

describe and represent the grammatical structure of natural or arti�cial languages. The

formal grammars can be built manually which is a costly and slow process or automat-

ically from a training set or samples which called grammar induction however it is an

NP�hard task.

However grammar induction and text mining are popular and actively researched areas of

computer science, there are only a few framework for these purposes. Weka is one of the

55

Chapter 5. META Framework 56

most famous of data mining and machine learning framework [HDW94, HFH+09]. For

educational purpose, Zeph Grundchlag implemented a few demo application to demon-

strate CFG processing algorithms at the University of Columbia. And OASIS has a

standard for unstructured document processing called Unstructured Information Man-

agement Applications which is implemented by Apache and IBM too. There are many

natural language processing frameworks such as GATE [CMBT], TectoMT [P�10] or

Zemberek [AA07].

5.1.1 Weka

Weka is a data mining and machine learning framework [HDW94, HFH+09, WFT+99,

FHH+05] implemented in Java and it has some text mining methods, utilities. It can be

used as a desktop application with its own Graphical Use Interface or as a class library

for application development. It has tools for preprocessing, classi�cation, clustering,

regression, visualization, etc. for data mining and has some text processing utilities for

example stemmers and tokenizers. Text mining and data mining have some common

methods and processes like classi�cation but the usage of these methods for text mining

and data mining di�er from each other.

Weka is popular because of its extensibility, GUI and it is well documented and also

has a lots of applications and references. It orders the di�erent methods into a package

hierarchy in Java, so it has a logical set-up and it is easy to extend.

5.1.2 RapidMiner

RapidMiner [Mie13, Min14] is also an open source data mining software. It is a desktop

application and has a well structured, nice GUI and a bunch of methods for di�erent

purposes. It can extract data from various sources called repositories for example Excel

�les or databases. In the design view, the user can determine the analysis process by

means of a directed graph. The roots of this graph are the selected repositories, the

other nodes are transformations and the terminations are the di�erent results.

5.1.3 cfgrep and JavaCFG

There are some educational applications for formal grammar processing and Context�

Free Grammars induction. One of these is made by Zeph Grunschlag at University

of Columbia [Gru06]. He wrote two educational software for Context�Free Grammar

processing and representation.

Chapter 5. META Framework 57

The �rst one is called cfgrep, it is a simple Java application to parse sentences based on

a Context�Free Grammar rule set. It has to optional �ags and requires two parameters.

The �rst parameter describes the grammar the other is a �le path which contains the

sentences. The given result depends on the �ags.

The JavaCFG is a parse tree generator for CFGs based on the Early's parsing algorithm.

It is also console based application, but it visualizes the result in a JTree object moreover

it generates a TeX �le which contains the parse tree too.

5.1.4 UIMA Standards

UIMA stands for Unstructured Information Management Applications, which project is

managed by IBM and Apache [Apa14], and it has Java and C++ implementations and it

is based on OASIS standard [OAS14]. Watson, the computer won Jeopardy, uses UIMA.

Its goal is to provide a framework to develop platform-independent reusable (distributed)

analysis modules which can process di�erent unstructured data sources.

The Apache UIMA framework's basic components called Analysis Engines are com-

posed to process and extract knowledge from di�erent unstructured data sources.

5.1.5 GATE Framework

GATE [CMBT] is a component based framework. Although the components can be im-

plemented in various programming languages, but there must be a Java class to represent

the component. It provides both an API and a graphical user interface for developers.

The framework distinguishes three types of resources> language, processing and visual.

The resources can be stored in database or serialized into �les in binary or XML formats.

GATE also support various data formats such as XML, RTF, HTML. It uses Unicode

characters so multiple languages can processed by the framework. The processing re-

sources are reusable algorithms and methods. GATE provides many natural language

processing methods such as tokeniser, sentence splitter, semantic tagger or co�referencer.

5.1.6 TectoMT

TectoMT [P�10] is a multi�purpose open source natural language processing framework.

It provides various functionalities such as sentence segmentation, tokenization, syntax

parsing and so on. It is used in a English�Czech machine translation system and it

provides modules for other languages like German, Russian or Arabic. The di�erent

algorithms, methods and functions are represented by blocks in TectoMT where each

Chapter 5. META Framework 58

block has a well�de�ned input and output. Hence TectoMT provides the modularity on

the level of blocks and it includes over 400 block [P�10]. The language processing tasks

are built from blocks and they are called scenarios. A language has four di�erent layers

of description: word, morphological, shallow�syntax and deep�syntax. The documents

are stored in �les and they store a sequence of sentences. Each sentence is represented

by a tree which is called bundle. TectoMT is implemented in Perl on Linux operation

system

TectoMT The tasks are represented in TectoMT as sequence of block where TectoMT

provides reusable modules which are

5.1.7 Zemberek Framework

Zemberek framework [AA07] is an open source, extensible, general purpose Natural Lan-

guage Processing Library for Turkic languages. Although the Turkic languages have

own alphabets and letters, but the framework supports only ASCII characters. Multiple

Turkic languages can be handled by the framework, but the language speci�c aspects

have to be implemented. The language implementations consist of various settings �les

sud as alphabet �le, su�x �le (XML) or root word dictionary. Zemberek framework

also provides basic natural language processing tools like morphological parsers or spell

checkers. The framework is implemented in Java and it is used in real world application

like OpenO�ce or Turkish Linux Distribution Pardus.

5.2 Purpose of the Framework

META aims to give a well de�ned, extensible grammar induction and text mining frame-

work which can be applied both in research and education. META provides some in-

terface for programmers to extends the framework with their own algorithms, modules

and process document sets. Analyzers are designed to use the implemented algorithm to

analyze document sets and visualize the given results by available modules. Thus META

has to be general and it has to provide necessary classes and interfaces to training set

handling, data preprocessing, machine learning, analyzing and visualization. Other im-

portant goal is to be well documented because documentation helps the understanding

and usage of the framework.

META was used to test and analyze di�erent Context�Free Grammar induction methods

such as TBL[SK99, Sak05], ITBL[UJ07, OU09] and inductive CYK[NI00, NM02]. META

provides a good way to analyze these algorithms in a common environment. Moreover,

Chapter 5. META Framework 59

META de�nes some interfaces for educational purposes like stemming, tokening, and so

on.

Table 5.1 summarizes some main characteristics of the above reviewed frameworks and

applications. The developed META framework is also shown in the framework. The �rst

column shows the framework. The main purpose of the framework is in the 2nd column.

The next column shows how the framework supports natural language processing tasks.

The 4th column shows whether the framework support multiple languages or not. The

5th column stands for the formal grammar modeling functions. Finally the last column

shows that the framework in which language can be extended, programmed.

Table 5.1: Comparision of Frameworks

Framework Purpose NLP Multi�Lang. FG Prog. Lang.
Weka DM, ML limited Java
Rapid Miner DM limited Visual
cfgrep, JavaCFG Education X Java
UIMA Standard X X C++, Java
GATE NLP X X Java, any
TectoMT NLP, Translation X X Perl
Zemberek NLP, Turkic X Turkic Java
META NLP, FG X X X Java

5.3 Components of META

META is designed to provide a method collection for grammar induction and text mining

[2, 5] and to provide some interfaces for programmers and developers to implement

own methods. Both grammar induction and text mining have a bunch of methods and

algorithms so META categorizes these algorithms into modules. The hierarchies and

dependencies of these modules de�nes the structure of the framework. Figure 5.1 shows

the basic logical architecture of META.

Grammar processing and text mining functions are distinguished in the architecture.

The common classes are in the Core module. The Filter and Analyzer modules are

related to text mining. They contain only interfaces for the di�erent processing tasks,

but these functions are not implemented yet. This part of the framework can be used

for educational purposes.

Grammar processing related functions are placed into the Grammar module. It was used

during my researches to implement and compare di�erent grammar induction methods.

META de�nes the main classes to model formal grammars. However it was used to handle

Chapter 5. META Framework 60

Figure 5.1: Architecture of META framework

context�free grammars, it uses a general representation of formal grammars. Moreover

it provides a way to handle probabilistic grammars too.

The framework is implemented in Java as a Maven project which has framework and

grammar.processing Maven modules. The modules of META are realized as packages

in Java. The interfaces and common classes are de�ned in the frameworkMaven module.

The concrete, implemented algorithms are placed into the grammar.processing Maven

module. Thus the framework is separated from the implementation of the algorithms.

Moreover the dependency handling was solved by Maven too so there is no need to copy

3rd party libraries into the project because they are contained in the Maven central

repository.

5.3.1 core module

Common classes of META framework are implemented in core package. These classes

represent the di�erent data sources, document sets and training sets. Some functions

are organized into other packages under the core package such as core.linsep or

core.markov packages. The core.linsep package contains the interfaces for linear sep-

arability testing methods. There is an implementation of Markov Algorithm, which is a

rewriting system, in the core.markov package.

Figure 5.2 shows some main classes of the core package of META framework. The

framework collects methods for computing unstructured data sets. This package contains

the representation of di�erent data sources for example various text documents such as

emails, HTML pages, word docs or di�erent voice documents like speech, song, or images.

The current version of META framework supports only text based documents.

Chapter 5. META Framework 61

Figure 5.2: core package of META framework

The DataSource class is an abstract superclass for each unstructured document class.

It has an URL attribute which identi�es the document, and a map to contain the meta

data of the data source. The most common keys for the map of meta data are contained

in the MetaData class. Document class is inherited from DataSource, and it represents

an unstructured text document and it has a list of string which represents the text of the

document. The DateSource and its descendants has no public constructor, because they

are built by the corresponding builder. The builders can be structured into a hierarchy

similar to the hierarchy of DataSource objects. The Corpus is a collection of Document

objects. Users can add, remove or get documents to the corpus and corpus also could be

processed by di�erent �lters and analyzers.

The core module also contains implementation of common subtasks like calculation

of edit distance of string. The EditDistanceCalculator de�nes an interface for the

Chapter 5. META Framework 62

concrete algorithms. There are two implementation of this interface in the core mod-

ule which are the LevenshteinDistance and the PhoneticLevenshteinDistance algo-

rithms. LevenshteinDistance class implements the Levenshtein algorithm [Nav01] to

calculate the edit distance of two strings and insertion, deletion and substitution costs

can be set by the constructor. Based on the phonetic alphabet, a modi�ed Levenshtein

algorithm was implemented in PhoneticLevenshteinDistance class. It uses a phonetic

alphabet which determines the insertion, deletion and substitution costs.

5.3.2 filter and analyzer modules

Interfaces for di�erent text �lter methods, such as stemmers and tokenizers, are contained

in this package. The �lters can modify the DataSource object in a well de�ned way, and

they must implement the Filter interface. Filter interface has no method but it is

required for �lter classes to be able to modify the given DataSource object. The current

version of the framework supports only the processing of text based documents, so it

has only a text package and this package contains the Stemmer and Tokenizer super

classes.

The analyze package contains super classes for analyzer objects. The classi�ers and

clustering method returns a list of set of Document objects. Programmers should derive

their methods from the corresponding superclass. The current version of the framework

contains only the speci�cation of analyzer methods and classes.

5.3.3 grammar module

The grammar module contains classes to model and handle formal grammars. The build-

ing elements like terminal, non�terminal symbols, production rules and probabilistic rules

are represented as classes. There are interfaces de�ned in this package for parsing and

induction methods. The formal grammars are general so any class of Chomsky hierarchy

[Cho56, Cho59] can be handled by this grammar. The Grammar class represent a formal

grammar. XML serialization of Grammar objects is realized by JAXB 3rd party library.

5.3.3.1 Symbol Representation

Formal grammars are built from terminal, and non�terminal symbols. These symbols

are distinguished by META Framework. The Terminal class represent a terminal, the

NonTermina represents a non�terminal symbols. The Symbol is an abstract class which

was created in order to handle the common aspects of Terminal and NonTerminal classes.

Chapter 5. META Framework 63

The Symbol class implements the Clonable interface because it is required to create copy

of Grammar objects. Figure 5.3 shows these classes on a class diagram.

Figure 5.3: Hierarchy of Symbol classes.

5.3.3.2 Rule Representation

Probabilistic and deterministic formal grammars can be distinguished in META frame-

work. Grammatical rules describe a substitution by de�nes which symbol sequence can

be replaced by an another one. The �rst symbol sequence is called the head or left side of

the rule, and the second is the tail or right side. The head is common in both production

rules and probabilistic rules. There are only one tail for a head in the case of production

rules. Probabilistic rules allows more tails for a head and each tail has a probability of

occurrence.

Figure 5.4 shows the class hierarchy of grammatical rules and their connection to the

Grammar class. The GrammaticalRule class is an abstract super class which represents

both production and probabilistic rules and it de�nes that, each rule has to have a head.

The ProductionRule represents production rules and it has only one tail. Probabilistic

Chapter 5. META Framework 64

Figure 5.4: Class hierarchy of GrammaticalRule classes.

rules are represented by ProbabilisticRule class which uses collections to handle mul-

tiple tails for a head. This class hierarchy makes it possible to distinguish the di�erent

rules and to handle them on a common way in the Grammar class.

Formal grammars are represented by the Grammar class. It has attributes to store

Terminal, NonTerminal, GrammaticalRule objects. It is a generic class and its generic

type has to be a GrammaticalRule so the Grammar class can handle ProductionRule or

ProbabilisticRule objects. If a Grammar object is instantiated with a ProductionRule

parameter, then it can handle only ProductionRule rules.

5.3.3.3 Parsing and Learning of Grammars

META Framework is easy to extend with new grammar processing algorithms because

it uses the strategy pattern [GHJV94] to change the behavior of the class. There

are ParseStrategy and LearnStrategy interfaces de�ned for parser and induction al-

gorithms. The Grammar class can use the implementation of these interfaces. The

ParseStrategy and LearnStrategy interfaces are also generic and their generic type

has to match with the generic type of the Grammar object. Thus if a grammar has

ProductionRule rules, then the processing method has to work with the same kind of

rules. The mixing of the types yields error during the development and the compilation.

The concrete processing methods can be set anytime during the life cycle of a Grammar

object. There are no default processing algorithms de�ned so they are initialized with

null. So StrategyNotSpecifiedException is de�ned which is thrown by parse and

learn methods of a Grammar object, if the given strategy is not set.

META framework can be extended with parsing and induction algorithms. This algo-

rithms are implemented in derived classes of ParseStrategy or LearnStrategy classes.

Figure 5.5 shows the connection of the Grammar class with the strategies and some imple-

mentation. The implemented algorithm are not generic unlike their interfaces. Because

Chapter 5. META Framework 65

Figure 5.5: Parse and Learn Strategies

the derived class has to de�ne the generic type in its de�nition and an algorithm works

with production rules or probabilistic rules.

5.3.4 Context�Free Grammar Extension

Grammar induction of context free languages is an actively researched area of computer

science. There are some algorithm, based on di�erent approaches, to induce context�free

grammars. Some well�known Context�Free Grammar processing methods have been

implemented, tested and compared in the META Framework. These methods are placed

in the grammar.processing Maven module, so they are separated from the framework

but it depends on it.

There is no extra class for CFG representation and this extension contains only methods

for CFG parsing and learning methods [7]. These methods are subclasses of ParseStrategy

or LearningStrategy classes so they can be set as a corresponding strategy to a com-

mon Grammar object. We have implemented a parsing method, (CYKStrategy), and three

learning methods and their modi�cations (TBLStrategy, ITBLStrategy and ICYKStrategy).

5.4 Implemented Methods

The grammar.processing Maven module contains the implementation of some well�

known context�free grammar processing algorithms. It uses the framework Maven mod-

ule. For parsing, the CYK parser has been implemented. Induction algorithms such as

the TBL[SK99, Sak05], the ITBL[UJ07, OU09], the inductive CYK[NI00, NM02] algo-

rithm, were implemented and compared. These algorithms were chosen because they are

well�well known and well�documented.

Chapter 5. META Framework 66

5.4.1 Parsers

Parser algorithms are constructed to solve the membership problem of formal grammars,

in other words they are means to decide that a given sentence ω is element of the language

LG generated by grammar G or not. Sentence ω is element of language LG if there are

at least one chain of production rules which starts with a sentence symbol S ∈ S and

ends with a sequence of terminal symbols of ω It can be de�ned with the following

mathematical formalism ω ∈ LG ⇔ ∃S =⇒∗G ω. The Early and the CYK parsers are

the most well�known and widely used algorithms to solve the membership problem of

Context�Free Grammars. The CYK algorithm has been implemented in the META

framework.

5.4.1.1 CYK Algorithm

CYK parser is a bottom-up parsing algorithm to solve the membership problem of CFGs

in O(n3) time. The CYK algorithm works on grammars in Chomkian Normal Form

(CNF) and it increases the cost of computation. It uses a table like data structure (T)

to determine which non terminal symbol set can generate a given part of the sentence.

Data is structured into a lower triangle matrix which cells contain set of non terminal

symbols and if N ∈ N and N ∈ Ti,j , then N =⇒∗G ωiωi+1 . . . ωi+j . Figure 5.6 shows the

pseudo code of the CYK algorithm. Sentence ω is in the language LG if there is at least
one non terminal symbol at the box Tr,0.

for c = 0→| ω | do
T0,c := {N | N ∈ N and N → ωc ∈ P}

end for
for r = 1→| ω | do

for c = 1→| ω | −r do
for k = 0→ r − 1 do

Tr,c := Tr,c ∪ {A | A ∈ N , B ∈ Tk,c, C ∈ Tr−k−1,c+r−k, A→ BC ∈ P}
end for

end for
end for

Figure 5.6: CYK Algorithm

The CYK algorithm is implemented in CYKStrategy, and it can be used by its parse

method. It is invoked by the Grammar object parse method if its parser attribute is a

CYKStrategy object. During the de�nition of the class, ProductionRule is de�ned as

generic type of the ParseStrategy so the implemented algorithm only can work with

Grammar object with ProductionRule generic parameter.

Chapter 5. META Framework 67

5.4.2 CFG Induction

The induction of Context�Free Grammars is an actively researched area of computer

science and there are many di�erent methods for this purpose. The induction methods

di�er from each other in their approach, applied techniques, performance and computa-

tional and time cost. The grammar.processing module contains the implementation of

some induction methods. These methods are brie�y reviewed in the followings.

5.4.2.1 TBL Algorithm

TBL algorithm is based on genetic algorithm [SK99][Sak05]. It requires positive and

negative samples to induce Context�Free Grammars. It uses a table like data structure,

similar to the data structure of CYK algorithm, to determine each possible unique parse

tree for each given sentences. These parse trees determines a so called primitive grammar

which exactly contains every possible deduction tree for each positive sentences. Hence

the primitive grammar accepts each positive sentences, but it contains about O(n5)

production rules for each positive sentences where n stands for the length of the word.

Genetic algorithm is applied to reduce the primitive grammar. The reduction is based on

the partitioning of the set of non�terminal symbols. If two non�terminal symbols belongs

to the same partition, they are in equivalence relationship so they are interchangeable.

Hence the non�terminal symbols can be substituted by one symbol from the partition

they belong to. This substitution results the reduction of the non�terminal symbols

which yields the merging of production rules too.

TBL algorithm consists of the following three steps:

1. Generation of primitive grammars (Gω(T (ω))) for each positive sentence (ω ∈ U+)

2. Composing the union of primitive grammar (G(U+) = ∪Gω(T (ω)))

3. Reducing the result grammar with a genetic algorithm

The essence of TBL algorithm is the applied genetic algorithm which assigns the non�

terminal symbols into partitions. It uses group number encoding to represent the so-

lutions. A temporary grammar is created for each candidate solution to evaluate the

�tness value. The �tness function is the following with C1, C2 parameters:

f1(p) =
| {ω ∈ U+ | G(T (U+))/πp} |

| U+ |
(5.1)

Chapter 5. META Framework 68

f2(p) =
1

| πp |
(5.2)

f(p) =


0 if ∃ω ∈ U− can be generated by

ω ∈ L(G(T (U+))/πp)
C1f1(p)+C2f2(p)

C1+C2
otherwise

(5.3)

Although the TBL algorithm seems to be a good way to induce Context�Free Grammars,

its time cost is very high because of the �tness function of the applied genetic algorithm.

The candidate solutions which accept any negative sentence are discarded. The determi-

nation of a grammar for a solution is a complex and costly process and the calculation of

�tness value requires parsing for each positive and negative sentences which has O(n2)

time cost.

The TBLStrategy implements this method and it can be invoked via the Grammar object

learn method.

5.4.2.2 ITBL Algorithm

ITBL algorithm[UJ07][OU09] is a modi�cation of base TBL algorithm which has lower

time cost than the base TBL algorithm. It di�ers from the base TBL only the applied

genetic algorithm and the �tness function.

The �tness function of ITBL algorithm with C1, C2, C3, C4 parameters is the following.

f3(p) =
| {ω ∈ U− | G(T (U+))/πp} |

| U− |
(5.4)

f(p) =


−(C3f3+C4(1−f1))

C3+C4
∃ω ∈ U− can be generated

by ω ∈ L(G(T (U+))/πp)
C1f1(p)+C2f2(p)

C1+C2
otherwise

(5.5)

Besides the modi�ed �tness function, ITBL algorithm uses a new special mutation op-

erations. These operations delete a non terminal symbol or a symbol block with a low

probability.

As result of these modi�cations, the ITBL algorithm makes faster more compact gram-

mars. On the other hand, it needs plenty of time to produce the grammar and its result

depends on the parameters of the applied genetic algorithm. Another drawback of TBL

and ITBL algorithms is that it can not work iteratively so a learned grammar can not

Chapter 5. META Framework 69

be extended with these methods. From that reason that the users have to complete the

training set with the new sentences, then run the method again on the new training set.

5.4.2.3 Heuristical pre-reduction with TBL and ITBL Algorithm

A heuristical pre-reduction [3, 4] method can make faster the TBL and ITBL algorithm.

The approach of this method is that the TBL and ITBL methods produce primitive

grammars which have O(n3) non terminal symbols and production rules. We suppose

that the most costly part of these methods is the applied genetic algorithm. The time

cost of the genetic algorithm depends on the length of chromosome which is given by the

number of the non terminal symbols. A pre-reduction method to reduce the number of

non terminal symbols was proposed so it makes faster the applied genetic algorithm.

The suggested pre�reduction distinguishes the following two steps:

1. Merge non terminal symbols which point to the same terminal symbol.

2. Merge rules with the same right side.

The order of these steps is important because of the production of primitive grammars.

The �rst step reduce the number of A→ a type rules (see Figure 5.7). It can perform a

great reduction on the set of A → a type rules because | T |≤
∑

ω∈TS+
| ω | where TS

stands for training set. Unfortunately, the set of A→ a type rules is a small subset of P,
hence we proposed a second reduction step (see Figure 5.8.) which merges the A→ BC

type rules. It is a greedy step because it works iteratively until it can not merge any non

terminal symbol. It applies inverted rule lists to determine which non terminal symbols

can deduce same BC, then it merges into same non terminal symbol.

for r ∈ R do
if r like A→ a then

r.left := UpperCase(r.right)
end if

end for

Figure 5.7: Heuristical pre-reductions �rst step

The HTBLStrategy and HITBLStrategy apply this pre-reduction method before the ge-

netic algorithm of TBL or ITBL algorithms. This pre-reduction method makes more

faster the above reviewed algorithm but the cost function remains still high.

Chapter 5. META Framework 70

while wasMerge do
wasMerge := false
for r in R do

iverseMap.put(r.right,r.left)
end for
for key in inverseMap do

if inverseMap.get(key).size > 1 then
merge(inverseMap.get(key))
wasMerge := true

end if
end for

end while

Figure 5.8: Heuristical pre-reductions second step

5.4.2.4 Inductive CYK algorithm

The inductive CYK algorithm [NI00, NM02] di�ers from the previous two methods be-

cause it has di�erent approach and works di�erently. However it uses a similar table

like data structure, it does not build primitive grammars. It is based on CYK parsing

algorithm. It adds new non�terminal rules and production rules stochastically. It uses

backtracking to avoid the learning of negative grammars.

Inductive CYK algorithm learns the sentences separately and works iteratively. For

each sentence (ω) it produces the parse table (Tω) which is a minimum subset of the

grammar (Gω = 〈Tω,Nω,Pω,Sω〉) which can generate the sentence or parts of it.Because

it completes this Gω, the modi�cations remain locally and it also helps to trace back the

faults. It stochastically adds non terminal symbols Ni and production rules ri = Ni →
BC where B,C ∈ Nω to the grammar Gω. After each modi�cation it tests Gω with

all negative sentences. If it accepts at least one negative sentence it undoes the most

recently modi�cations, else it keeps the modi�cations and tests with ω. It it accepts ω

then it �nalizes the necessary modi�cations. Because Gω ⊆ G these modi�cations a�ect

on G.

The Figure 5.9 shows a brief pseudo code of inductive CYK algorithm, the base method

contains R and Rmax parameters where R ≤ Rmax to control its work.

The InductiveCYKStrategy class implement this algorithm. This learn method returns

true if and only if it learned each positive sentence successfully.

Chapter 5. META Framework 71

T := cyk(ω)
if T|ω|,0 ∩N 6= ∅ then

return
end if
for c := 0 →| ω | do

if T0,c = ∅ then
Nω := Nω ∪A
Rω := Rω ∪ {A→ ωc}
T0,c := T0,c ∪A

end if
end for
for r := 1 →| ω | do

for c := 0 →| ω | −r do
if Tr,c ≡ ∅ then

for k := 0 → r do
for B ∈ Tk,c do

for C ∈ Tr−k,c+k do
nondeterministical step
Nω := Nω ∪A
Rω := Rω ∪ {A→ ωc}
Tr,c := T0,c ∪A
check

end for
end for

end for
end if

end for
end for

Figure 5.9: Inductive CYK algorithm

5.5 Experimental Results

The TBL, ITBL, and Inductive CYK algorithms were implemented and tested in the

META Framework. The measurements focus on the time cost of these algorithms. There

were two training set created for the comparison.

5.5.1 Measurements

There were two training set generated for the testing. The �rst training set (TSabc)

contains words of a language like L = {anbmco | n,m, o ∈ N+∪{0}} and the other training
set (TSSQL) contains SQL like sentences. The methods were tested with di�erent size of

these training sets. It allowed to measure how the algorithms behave with the increase

of the number of samples. The roman numbers denote the size of the training sets where

the I is the smallest and V is the largest training set. The TBLStrategy, ITBLStrategy

and InductiveCYKStrategy classes were used in the META Framework during the tests.

Chapter 5. META Framework 72

5.5.2 Results of TSabc

The �rst language contains sentences of arbitrary length of sequence of a, b and c char-

acters and the characters are divided by space. Table 5.2 summarizes some parameter

of TSabc and the roman numbers denote di�erent subset of training set TSabc, | TSabc |
denotes the count of positive sentences, | ω | stands for the average length of positive

sentence and | T | denotes the number of terminal symbols (di�erent word) in the posi-

tive sentences. The algorithms were tested with relatively small training sets because of

their time complexity.

Table 5.2: Characteristics of TSabc

TSabc I II III IV V

| TSabc | 2 4 5 6 7
| ω | 3 3 3 3.5 3.8
| T | 3 3 3 3 3

Each method were tested three times with each training set and their results were ag-

gregated. The average time costs of these algorithms are summed up in Table 5.3

and visualized in Figure 5.10. In the table, row denoted by TBL contains the re-

sults given by TBLStrategy, the ITBL refers to ITBLStrategy and IndCYK denotes

InductiveCYKStrategy and the values are in milliseconds. In Figure 5.10, the vertical

axis denotes the required average runtime for the algorithms in milliseconds. The line

of ITBLStrategy overlaps the line of TBLStrategy and the x axis overlaps the line of

InductiveCYKStrategy.

Table 5.3: Results on TSabc

TSabc I II III IV V

TBL 737.33 2797.66 5278.33 106281.3 459550.3
ITBL 515.66 2772 5667.66 102435.3 450272

IndCYK 3 5 6.33 33.33 53

5.5.3 Results of TSSQL

The second language contains SQL queries on a scheme with two tables (t1 and t2) with

four-four �elds (f1-f4 and f5-f8). Table 5.4 sums up the characteristics of training

set TSSQL where the di�erent subsets are denoted by roman numbers and | TSSQL |
stands for the number of positive sentences, | ω | stands for the average length of positive

sentences and | T | denotes the number of terminal symbols.

We have tested the algorithms three times with these training sets and analyzed the given

results. The average runtime in milliseconds are summed up in Table 5.5. The results

Chapter 5. META Framework 73

Figure 5.10: Time costs on TSabc

Table 5.4: Characteristics of TSSQL

TSSQL I II III IV V

| TSSQL | 2 4 6 8 10
| ω | 4 4.75 4.5 4.75 4.8
| T | 5 8 9 12 13

are visualized in Figure 5.11 where the y axis denotes the required time in milliseconds.

The line of ITBLStrategy overlaps the line of TBLStrategy and the x axis overlaps the

line of InductiveCYKStrategy.

Table 5.5: Results on TSSQL (ms)

TSSQL I II III IV V

TBL 1952,33 47133.66 86925.66 304511.3 636345.3
ITBL 1697 48356.66 87380.66 303317.3 635760.3

IndCYK 247.66 218 232.66 289 256

In this case, we found that the InductiveCYKStrategy often stuck and did not give any

response. To solve this problem, we added a counter to it to break the method if it do

too many iteration. If it could not learn the grammar, its runtime was negative because

it was unsuccessful. We think that this problem is the reason why we got these results.

5.6 Conclusions

This chapter presents the META which is a novel grammar induction and text processing

framework. It is similar to Weka because it is well structured and implemented in Java,

but it is focused on grammar induction and processing tasks instead of data mining and

Chapter 5. META Framework 74

Figure 5.11: Time costs on TSabc

machine learning. Compared with other grammar induction systems, META provides

a common environment and interfaces to implement own induction and parsing meth-

ods. The architecture and the main components were presented and the formal grammar

modeling module were detailed. To demonstrate the ability of META the CYK paring

and the TBL, ITBL, Heuristic TBL and Inductive CYK induction algorithms were im-

plemented and compared. The experiments were focused on the time cost of the chosen

methods. Inductive CYK algorithm was shown superior to TBL and ITBL algorithms.

Thus the presented META framework provides a common environment to implement,

test and compare formal grammar induction and processing methods.

Thesis 3.

I have designed and developed the META framework to provide an environment for

implementation, testing and comparison of di�erent natural language processing methods.

My experiments showed that both in�ection and formal grammar processing methods can

be implemented in the META framework

Related Publications: [2], [3], [4], [5], [6], [7]

Chapter 6

Summary

6.1 Contribution

There were three new scienti�c results in two major categories presented in this paper.

The �rst topic is the learning of the in�ection rules. The main goal was to create an

universal in�ecting algorithm which can learn any kind of in�ection which was considered

as string transformation. The problem domain was analyzed and the linear separability

of the classes was used to measure the complexity. Then a novel in�ection algorithm

was introduced which is based on classi�cation and it also uses associative memory.

The proposed algorithm was compared with standard classi�ers and it has been shown

superior. The second topic is focused on the induction of formal grammar especially on

the induction of Context�Free Grammars. META Framework was created to provide a

common environment for grammar processing and induction methods.

To measure the complexity of the in�ection rule induction, I have tested the linear sepa-

rability of in�ection classes in vector space. This property depends on the representation

so I have introduced a method to create phonetic features based alphabet. This methods

put the letters into a vector space based on their phonetic features, then reduces the

space into one dimension. While the traditional alphabet de�nes only an ordering of

letters, the phonetic alphabet maps the letters into real values where the position and

the distances are based on the phonetic features. Linear separability was tested on a

training set of 54.000 samples which contains stem and accusative form of Hungarian

nouns. Experimental results showed the phonetic alphabet based encoding superior to

the traditional alphabet based encoding .

I have proposed a classi�cation based in�ection algorithm which uses associative memory

to store the exceptions. The in�ection rules for the regular words are determined by the

75

Chapter 6. Summary 76

classi�er thus the algorithm can generalize and in�ect untrained words. The irregular

words are stored are stored in the associative memory thus the algorithm can handle the

exceptions with high precision. The size of the associative memory is a parameter of

the algorithm. Experimental results showed that, the 90% precision can be exceed with

an associative memory of 20.000 samples which is approximately the 40% of the total

training set. The proposed algorithm was compared with standard classi�cation method.

The comparison showed that the algorithm has higher precision and lower learning cost

but the size of the classi�cation structure increases with the associative memory.

Formal Grammars are widely used to model the grammatical structures of the natural

languages. The theory of formal grammars were laid in the 1950's � 1960's. These al-

gorithms have signi�cant computational complexity and the capacities were not enough.

At the dawn of this century these algorithms have been realized and many context�free

grammar induction method was developed. However the performance of these methods

were analyzed separately, but there is no common environment to model formal gram-

mars and to implement, test and compare grammar induction and processing methods.

META Framework was designed to handle formal grammars. The abilities of META

Framework were tested with well�known context�free grammar induction algorithms

such as TBL, ITBL or Inductive CYK methods. Experimental results showed that the

META is capable to model formal grammars and provides the su�cient interfaces for

grammar processing methods.

These scienti�c results were summarized in the following three thesis.

Thesis 1.

I have measured the complexity of in�ection rules induction by the ration of the linear

separable clusters pairs in the vector space. I have introduced a methods to create phonetic

features based alphabet. The created phonetic alphabet based encoding was shown superior

to traditional alphabet based encoding.

Related Publications: [8], [9]

Thesis 2.

I have presented a classi�cation based in�ection method enhanced with associative mem-

ory. The algorithm has been shown superior to the standard classi�cation based in�ection

algorithms from the point of view of precision.

Related Publications: [10], [11], [12]

Chapter 6. Summary 77

Thesis 3.

I have designed and developed the META framework to provide an environment for

implementation, testing and comparison of di�erent natural language processing methods.

My experiments showed that both in�ection and formal grammar processing methods can

be implemented in the META framework

Related Publications: [2], [3], [4], [5], [6], [7]

6.2 Future Works

The presented topics are still active research areas. The presented phonetic alphabet

generation method was tested with indexes of the categories. In the future the per-

formance of di�erent phonetic alphabet could be measured where the parameter values

should be de�ned by a linguist. The representation of the letters also could be re�ned

by the encoding of a letter with real vector.

The testing of linear separability showed why the linear classi�ers have poor performance.

Hence di�erent non�linear and other classi�cation methods will be probed to learn the

in�ection rules. The research will be also focused on the applicability of �nal state

transducers and concept latices for learning in�ection rules.

The current version of META Framework contains the implementation of only a few well�

known context�free grammar induction algorithms however it was designed to model any

kind of formal grammars. It should be extended with other context�free and probabilistic

context�free grammar induction methods. Moreover there are many di�erent regular

processing algorithms in the literature which could be also implemented in the framework.

Appendix A

Zoomed Figures

This appendix contains the zoomed version of Figure 3.11, Figure 4.3 and Figure 4.4.

Figure A.1: User Interface of the developed MatLab Application for Hungarian

78

Appendix A. Figures 79

(a) [2, 4, 6]

(b) [5, 10]

(c) [5, 7, 10]

Figure A.2: Precision of Multilayer Perceptron Classi�er with di�erent hidden layers

Appendix A. Figures 80

(a) Naive Bayes

(b) K*

(c) Multilayer Perceptron

Figure A.3: Learning Cost of the Tested Classi�ers

Appendix B

Source Codes

B.1 MatLab Application

The MatLab script �les can be downloaded as a zip archive from http://www.iit.uni-

miskolc.hu/iitweb/export/sites/default/users/tothzs/research/phoneticAlphabet/phone-

ticAlphabet.zip

B.2 META Framework

B.2.1 Framework

The META Framework can be downloaded as a JAR �le from

http://www.iit.uni-miskolc.hu/iitweb/opencms/users/tothzs/research/meta/meta-0.9.0-

SNAPSHOT.jar

B.2.2 Documentation

The documentation is found at

http://www.iit.uni-miskolc.hu/iitweb/export/sites/default/users/tothzs/research/meta/

site.zip

81

http://www.iit.uni-miskolc.hu/iitweb/export/sites/default/users/tothzs/research/phoneticAlphabet/phoneticAlphabet.zip
http://www.iit.uni-miskolc.hu/iitweb/export/sites/default/users/tothzs/research/phoneticAlphabet/phoneticAlphabet.zip
http://www.iit.uni-miskolc.hu/iitweb/export/sites/default/users/tothzs/research/phoneticAlphabet/phoneticAlphabet.zip
http://www.iit.uni-miskolc.hu/iitweb/opencms/users/tothzs/research/meta/meta-0.9.0-SNAPSHOT.jar
http://www.iit.uni-miskolc.hu/iitweb/opencms/users/tothzs/research/meta/meta-0.9.0-SNAPSHOT.jar
http://www.iit.uni-miskolc.hu/iitweb/export/sites/default/users/tothzs/research/meta/site.zip
http://www.iit.uni-miskolc.hu/iitweb/export/sites/default/users/tothzs/research/meta/site.zip

Bibliography

[AA07] Ahmet Afsin Ak�n and Mehmet Dündar Ak�n. Zemberek, an open source nlp

framework for turkic languages. Structure, 10, 2007.

[Apa14] Apahce. Uima, 2014. http://uima.apache.org/index.html.

[ASA01] Raátz Judit Antalné Szabó Ágnes. Magyar nyelv és kommunikáció Tankönyv

5-6. évfolyam számára. Nemzeti Tankönyvkiadó, 2001.

[Ass99] International Phonetic Association. Handbook of the International Phonetic

Association: A guide to the use of the International Phonetic Alphabet. Cam-

bridge University Press, 1999.

[Bar13] Péter Barabás. Domain� and Language�Adaptable Natural Language Control-

ling Framework. PhD thesis, University of Miskolc, József Hatvany Doctoral

School of Information Science, Engineering and Technology, 2013.

[BCM+08] António Branco, Francisco Costa, Pedro Martins, Filipe Nunes, João Silva,

and Sara Silveira. Lx-service: Web services of language technology for por-

tuguese. In LREC, 2008.

[Bed12] László Bednarik. Automatizált Kérdésgenerállás Annotált Szövegb®l. PhD

thesis, University of Miskolc, József Hatvany Doctoral School of Information

Science, Engineering and Technology, 2012.

[BM94] Kristin P Bennett and Olvi L Mangasarian. Multicategory discrimination

via linear programming. Optimization Methods and Software, 3(1-3):27�39,

1994.

[CDG+08] Fay Chang, Je�rey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A

Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gru-

ber. Bigtable: A distributed storage system for structured data. ACM Trans-

actions on Computer Systems (TOCS), 26(2):4, 2008.

[Cho56] Noam Chomsky. Three models for the description of language. Information

Theory, IRE Transactions on, 2(3):113�124, 1956.

82

http://uima.apache.org/index.html

Bibliography 83

[Cho59] Noam Chomsky. On certain formal properties of grammars. Information and

control, 2(2):137�167, 1959.

[Cho03] Gobinda G Chowdhury. Natural language processing. Annual review of

information science and technology, 37(1):51�89, 2003.

[Cla02] Alexander Clark. Memory-based learning of morphology with stochastic

transducers. In Proceedings of the 40th Annual Meeting on Association for

Computational Linguistics, pages 513�520. Association for Computational

Linguistics, 2002.

[CMBT] Hamish Cunningham, Diana Maynard, Kalina Bontcheva, and Valentin

Tablan. Gate: an architecture for development of robust hlt applications

hamish cunningham, diana maynard, kalina bontcheva, valentin tablan de-

partment of computer science university of she�eld.

[Con98] DM Conway. An algorithmic approach to english pluralization. In Proceedings

of the Second Annual Perl Conference. C. Salzenberg. San Jose, CA, O'Reilly,

1998.

[CT+95] John G Cleary, Leonard E Trigg, et al. K�*: An instance-based learner using

an entropic distance measure. In ICML, pages 108�114, 1995.

[DFG11] Arianna D'Ulizia, Fernando Ferri, and Patrizia Grifoni. A survey of gram-

matical inference methods for natural language learning. Artif. Intell. Rev.,

pages 1�27, 2011.

[Dom07] Tikk Domokos. Szövegbányászat. Typotex Kft, 2007.

[Dud06] László Dudás. Morfémák megtanulása szövegb®l. In MicroCAD 2006 In-

ternational Scienti�c Conference, pages 61�66, Miskolc, 2006. University of

Miskolc.

[Eli06] David Elizondo. The linear separability problem: Some testing methods.

Neural Networks, IEEE Transactions on, 17(2):330�344, 2006.

[FHH+05] Eibe Frank, Mark Hall, Geo�rey Holmes, Richard Kirkby, Bernhard

Pfahringer, Ian H Witten, and Len Trigg. Weka. In Data Mining and Knowl-

edge Discovery Handbook, pages 1305�1314. Springer, 2005.

[Fod02] Imola K Fodor. A survey of dimension reduction techniques, 2002.

[GAH04] Alexander Gelbukh, Mikhail Alexandrov, and Sang-Yong Han. Detecting

in�ection patterns in natural language by minimization of morphological

model. In Progress in Pattern Recognition, Image Analysis and Applications,

pages 432�438. Springer, 2004.

Bibliography 84

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

patterns: elements of reusable object-oriented software. Pearson Education,

1994.

[GI90] Thomas V Gamkrelidze and VV Ivanov. The early history of indo-european

languages. Scienti�c American, 262(3):110�116, 1990.

[Gru06] Zeph Grunschlag. Authored software. webpage, 2006. http://www.cs.

columbia.edu/~zeph/software.html.

[HDW94] Geo�rey Holmes, Andrew Donkin, and Ian H Witten. Weka: A machine

learning workbench. In Intelligent Information Systems, 1994. Proceedings

of the 1994 Second Australian and New Zealand Conference on, pages 357�

361. IEEE, 1994.

[Hel03] Eugene Helimski. Areal groupings (sprachbünde) within and across the bor-

ders of the uralic language family: A survey. Nyelvtudományi közlemények,

100:156�167, 2003.

[HFH+09] Mark Hall, Eibe Frank, Geo�rey Holmes, Bernhard Pfahringer, Peter Reute-

mann, and Ian H Witten. The weka data mining software: an update. ACM

SIGKDD explorations newsletter, 11(1):10�18, 2009.

[HKN+04] Péter Halácsy, András Kornai, László Németh, András Rung, István Sza-

kadát, and Viktor Trón. Creating open language resources for hungarian. In

LREC, 2004.

[JL95] George H. John and Pat Langley. Estimating continuous distributions in

bayesian classi�ers. In Eleventh Conference on Uncertainty in Arti�cial In-

telligence, pages 338�345, San Mateo, 1995. Morgan Kaufmann.

[JMM96] Anil K Jain, Jianchang Mao, and K Moidin Mohiuddin. Arti�cial neural

networks: A tutorial. Computer, 29(3):31�44, 1996.

[Jol05] Ian Jolli�e. Principal component analysis. Wiley Online Library, 2005.

[KHP05] Hyunsoo Kim, Peg Howland, and Haesun Park. Dimension reduction in text

classi�cation with support vector machines. In Journal of Machine Learning

Research, pages 37�53, 2005.

[Knu76] Donald E Knuth. Big omicron and big omega and big theta. ACM Sigact

News, 8(2):18�24, 1976.

[Kor08] András Kornai. Mathematical linguistics. Springer, 2008.

http://www.cs.columbia.edu/~zeph/software.html
http://www.cs.columbia.edu/~zeph/software.html

Bibliography 85

[Kru64] Joseph B Kruskal. Multidimensional scaling by optimizing goodness of �t to

a nonmetric hypothesis. Psychometrika, 29(1):1�27, 1964.

[Lev66] Vladimir I Levenshtein. Binary codes capable of correcting deletions, inser-

tions and reversals. In Soviet physics doklady, volume 10, page 707, 1966.

[Mar96] Gary F Marcus. Why do children say" breaked"? Current Directions in

Psychological Science, pages 81�85, 1996.

[Mey10] Charles F Meyer. Introducing English Linguistics International Student Edi-

tion. Cambridge University Press, 2010.

[Mie13] Ingo Mierswa. Getting used to rapidminer. RapidMiner: Data Mining Use

Cases and Business Analytics Applications, page 19, 2013.

[Min14] Rapid Miner. Home page, 2014. http://rapid-i.com.

[MLCL04] Christian Monson, Alon Lavie, Jaime Carbonell, and Lori Levin. Unsuper-

vised induction of natural language morphology in�ection classes. In Proceed-

ings of the 7th Meeting of the ACL Special Interest Group in Computational

Phonology: Current Themes in Computational Phonology and Morphology,

pages 52�61. Association for Computational Linguistics, 2004.

[Mol01] Raymond A Molnar. �Generalize and Sift� as a Model of In�ection Acquisi-

tion. PhD thesis, Massachusetts Institute of Technology, 2001.

[Mor03] Edith Moravcsik. In�ectional morphology in the hungarian noun phrase: A

typological assessment. Noun phrase structure in the languages of Europe,

20, 2003.

[Nav01] Gonzalo Navarro. A guided tour to approximate string matching. ACM

computing surveys (CSUR), 33(1):31�88, 2001.

[NG09] Jason Naradowsky and Sharon Goldwater. Improving morphology induction

by learning spelling rules. In IJCAI, pages 1531�1536, 2009.

[NI00] Katsuhiko Nakamura and Takashi Ishiwata. Synthesizing context free gram-

mars from sample strings based on inductive cyk algorithm. 2000.

[NM65] John A Nelder and Roger Mead. A simplex method for function minimiza-

tion. Computer journal, 7(4):308�313, 1965.

[NM02] Katsuhiko Nakamura and Masashi Matsumoto. Incremental learning of con-

text free grammars. 2002.

http://rapid-i.com

Bibliography 86

[OAS14] OASIS. Unstructured information management architecture, 2014. http:

//docs.oasis-open.org/uima/v1.0/uima-v1.0.html.

[OU09] Marcin Jaworski Olgierd Unold. Learning context-free grammar using im-

proved tabular representation. Applied Soft Computing, 2009.

[Pat06a] Máté Pataki. Distributed similarity and plagiarism search. 2006.

[Pat06b] Máté Pataki. Plagiarism search within one document. 2006.

[Pin91] Steven Pinker. Rules of language. Science, 253(5019):530�535, 1991.

[Por80] Martin F Porter. An algorithm for su�x stripping. Program: electronic

library and information systems, 14(3):130�137, 1980.

[Por01] Martin Porter. Snowball: A language for stemming algorithms, 2001.

[P�10] Martin Popel and Zden¥k �abokrtsk�y. Tectomt: modular nlp framework. In

Advances in Natural Language Processing, pages 293�304. Springer, 2010.

[RDM65] HL Resniko�, JL Dolby, and Lockheed Missiles. The nature of a�xing in

written english. Mechanical Translation, 8(3):4, 1965.

[RG06] Farkas Richárd and Szarvas György. Statisztikai alapú tulajdonnév-felismer®

magyar nyelvre. 2006.

[RS80] Grzegorz Rozenberg and Arto Salomaa. The mathematical theory of L sys-

tems, volume 90. Academic press, 1980.

[Sak05] Yasubumi Sakakibara. Learning context-free grammar using tabular repre-

sentation. Pattern Recognition, 2005.

[SFH04] Helmut Schmid, Arne Fitschen, and Ulrich Heid. Smor: A german computa-

tional morphology covering derivation, composition and in�ection. In LREC,

2004.

[Sha75] Michael Ian Shamos. Geometric complexity. In Proceedings of seventh annual

ACM symposium on Theory of computing, pages 224�233. ACM, 1975.

[Shi87] Stuart M Shieber. Evidence against the context-freeness of natural language.

Springer, 1987.

[SK99] Yasubumi Sakakibara and Mitsuhiro Kondo. Ga-based learning of context-

free grammars using tabular representation. 1999.

[SV99] Johan AK Suykens and Joos Vandewalle. Least squares support vector ma-

chine classi�ers. Neural processing letters, 9(3):293�300, 1999.

http://docs.oasis-open.org/uima/v1.0/uima-v1.0.html
http://docs.oasis-open.org/uima/v1.0/uima-v1.0.html

Bibliography 87

[TDSL00] Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric

framework for nonlinear dimensionality reduction. Science, 290(5500):2319�

2323, 2000.

[TG05] The CMS Trigger and Data Acquisition Group. The cms high level trigger.

arXiv preprint hep-ex/0512077, 2005.

[UJ07] Olgierd Unold and Marcin Jaworski. Improved tbl algorithm for learning

context-free grammar. 2007.

[Var11] Erika Baksáné Varga. Ontology�based Semantic Annotation and Knowledge

Representation in a Gramar Induction System. PhD thesis, University of

Miskolc, József Hatvany Doctoral School of Information Science, Engineering

and Technology, 2011.

[WEG87] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis.

Chemometrics and intelligent laboratory systems, 2(1):37�52, 1987.

[WFT+99] Ian H Witten, Eibe Frank, Leonard E Trigg, Mark A Hall, Geo�rey Holmes,

and Sally Jo Cunningham. Weka: Practical machine learning tools and tech-

niques with java implementations. 1999.

[Wik14] Wikipedia. Principal component analysis @ONLINE, 2014.

[Yeg09] B Yegnanarayana. Arti�cial neural networks. PHI Learning Pvt. Ltd., 2009.

[Zha00] Guoqiang Peter Zhang. Neural networks for classi�cation: a survey. Systems,

Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions

on, 30(4):451�462, 2000.

[Zsu97] Hajas Zsuzsa. Magyar nyelv 9. osztály. Pedellus Kiadó, 1997.

Author's Publications

[1] László Kovács, László Grigger and Zsolt Tóth, Induction of PCFG trees, microCAD

International Scienti�c Conference, 2010

[2] Zsolt Tóth, László Kovács Cost Analysis of Grammar Induction with CFG , XXV.

microCAD International Scienti�c Conference 2011.

[3] Zsolt Tóth, László Kovács El®redukció alkalmazása a TBL algoritmus id®költségének

csökkentésére , Miskolci Egyetem, Doktoranduszok Fóruma 2011.

[4] Zsolt Tóth, László Kovács Applying Prereduction to Reduce the Tim Cost of TBL

Algorithm , 12th IEEE International Symphosium on Computational Intelligence

and Informatics, pp. 544-546, 2011.

[5] Zsolt Tóth, László Kovács META a novel grammar induction and text mining

framework , XXVI. microCAD, 2012.

[6] Zsolt Tóth, László Kovács CFG Extension for META Framework , 16th Interna-

tional Conference on Intelligent Engineering Systems, pp. 495-500 2012.

[7] Zsolt Tóth Formális nyelvtani modul a META keretrendszer számára , GÉP: A

Gépipari Tudományos Egyesület folyóirata, 2012. volume 5, pp. 99-102

[8] Tóth Zsolt, Kovács László Fonetikai tulajdonságok alapú abc készítése , Multidisz-

ciplináris tudományok, 2013. volume 3 pp. 317-326

[9] Zsolt Tóth, László Kovács Testing Linear Separability in Classi�cation of In�ection

Rules , SISY 2014 IEEE 12th International Symposium on Intelligent Systems and

Informatics, pp XX. 2014

[10] László Kovács, Zsolt Tóth Inference of Probabilistic Grammars in Di�erent Rules

Systems of Natural Languages In Procedia Technology, volume 12, pp. 3 - 10, 2014.

(The 7th International Conference Interdisciplinarity in Engineering, INTER-ENG

2013, 10-11 October 2013, Petru Maior University of Tirgu Mures, Romania)

88

Author's Publications 89

[11] Zsolt Tóth, László Kovács Classi�cation based Learninig of In�ection Rules En-

hanced with Associative�Memory , Scienti�c Bulletin of "Petru Maior", 2014, vol.

11, no. 2, pp. 9-16.

[12] Zsolt Tóth, László Kovács Lattices based Classi�cation for Learning of In�ection

rules in Hungarian , to appear

	Declaration of Authorship
	Recommendation
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	1.1 Research Goals
	1.2 Dissertation Guide

	2 Theoretical Background
	2.1 Categorization of Natural Languages
	2.1.1 Characteristics of Hungarian Language
	2.1.2 Comparison of European Languages

	2.2 Text Mining
	2.2.1 Natural Language Processing Projects for Hungarian

	2.3 Formal Languages
	2.3.1 Formal Grammars
	2.3.1.1 Chomsky–Hierarchy
	2.3.1.2 Context–Free Grammars
	Parsing of Context–Free Grammars
	Induction of context–free grammars

	2.4 Conclusions

	3 Complexity Analysis of the Inflection Induction Problem
	3.1 Linear Separability
	3.1.1 Testing Linear Separability with Linear Programming
	3.1.2 Multiple Sets
	3.1.3 Cost Analysis of the Simplex Method based Linear Separability Testing
	3.1.3.1 Simplex Method
	3.1.3.2 Random Case
	3.1.3.3 Separable Case

	3.2 Phonetics
	3.2.1 International Phonetic Alphabet
	3.2.2 Phonetic Features of Hungarian

	3.3 Vector Space Representation
	3.3.1 Dimension Reduction based on Principal Component Analysis

	3.4 Generation of Phonetic Alphabet
	3.5 Linear Separability of Inflection Rules in Hungarian
	3.5.1 Linear Separability of Inflection
	3.5.1.1 Visualization

	3.6 Conclusions

	4 Induction of Inflection Rules with Classification and Associative Memory
	4.1 Computational Morphology
	4.1.1 Hungarian Solutions

	4.2 Dataset
	4.2.1 Categories
	4.2.1.1 Transformation String
	4.2.1.2 Evaluation of Problem Domain

	4.3 Standard Classification Methods
	4.3.1 Precision
	4.3.2 Learning Cost
	4.3.3 Size of the Classifier Structure
	4.3.4 Evaluation

	4.4 Proposed AMC Method
	4.5 Experimental Results
	4.5.1 Precision
	4.5.2 Size of the data structure
	4.5.3 Time Cost

	4.6 Evaluation
	4.7 Conclusion

	5 META Framework
	5.1 Data Mining and Text Processing Frameworks
	5.1.1 Weka
	5.1.2 RapidMiner
	5.1.3 cfgrep and JavaCFG
	5.1.4 UIMA Standards
	5.1.5 GATE Framework
	5.1.6 TectoMT
	5.1.7 Zemberek Framework

	5.2 Purpose of the Framework
	5.3 Components of META
	5.3.1 core module
	5.3.2 filter and analyzer modules
	5.3.3 grammar module
	5.3.3.1 Symbol Representation
	5.3.3.2 Rule Representation
	5.3.3.3 Parsing and Learning of Grammars

	5.3.4 Context–Free Grammar Extension

	5.4 Implemented Methods
	5.4.1 Parsers
	5.4.1.1 CYK Algorithm

	5.4.2 CFG Induction
	5.4.2.1 TBL Algorithm
	5.4.2.2 ITBL Algorithm
	5.4.2.3 Heuristical pre-reduction with TBL and ITBL Algorithm
	5.4.2.4 Inductive CYK algorithm

	5.5 Experimental Results
	5.5.1 Measurements
	5.5.2 Results of TSabc
	5.5.3 Results of TSSQL

	5.6 Conclusions

	6 Summary
	6.1 Contribution
	6.2 Future Works

	A Zoomed Figures
	B Source Codes
	B.1 MatLab Application
	B.2 META Framework
	B.2.1 Framework
	B.2.2 Documentation

	Bibliography
	Author's Publications

